
A POPL Pearl Submission

Clowns to the Left of me, Jokers to the Right
Dissecting Data Structures

Conor McBride
University of Nottingham

ctm@cs.nott.ac.uk

Abstract
This paper, submitted as a ‘pearl’, introduces a small but useful
generalisation to the ‘derivative’ operation on datatypes underly-
ing Huet’s notion of ‘zipper’ (Huet 1997; McBride 2001; Abbott
et al. 2005b), giving a concrete representation to one-hole contexts
in data which is in mid-transformation. This operator, ‘dissection’,
turns a container-like functor into a bifunctor representing a one-
hole context in which elements to the left of the hole are distin-
guished in type from elements to its right.

I present dissection for polynomial functors, although it is cer-
tainly more general, preferring to concentrate here on its diverse
applications. For a start, map-like operations over the functor and
fold-like operations over the recursive data structure it induces can
be expressed by tail recursion alone. Moreover, the derivative is
readily recovered from the dissection, along with Huet’s navigation
operations. A further special case of dissection, ‘division’, captures
the notion of leftmost hole, canonically distinguishing values with
no elements from those with at least one. By way of a more prac-
tical example, division and dissection are exploited to give a rela-
tively efficient generic algorithm for abstracting all occurrences of
one term from another in a first-order syntax.

The source code for the paper is available online1 and compiles
with recent extensions to the Glasgow Haskell Compiler.

1. Introduction
There’s an old Stealer’s Wheel song with the memorable chorus:

‘Clowns to the left of me, jokers to the right,
Here I am, stuck in the middle with you.’

Joe Egan, Gerry Rafferty

In this paper, I examine what it’s like to be stuck in the middle
of traversing and transforming a data structure. I’ll show both you
and the Glasgow Haskell Compiler how to calculate the datatype of
a ‘freezeframe’ in a map- or fold-like operation from the datatype
being operated on. That is, I’ll explain how to compute a first-class
data representation of the control structure underlying map and fold
traversals, via an operator which I call dissection. Dissection turns
out to generalise both the derivative operator underlying Huet’s

1 http://www.cs.nott.ac.uk/∼ctm/CloJo/CJ.lhs

[Copyright notice will appear here once ’preprint’ option is removed.]

‘zippers’ (Huet 1997; McBride 2001) and the notion of division
used to calculate the non-constant part of a polynomial. Let me
take you on a journey into the algebra and differential calculus of
data, in search of functionality from structure.

Here’s an example traversal—evaluating a very simple language
of expressions:

data Expr = Val Int | Add Expr Expr

eval :: Expr → Int
eval (Val i) = i
eval (Add e1 e2) = eval e1 + eval e2

What happens if we freeze a traversal? Typically, we shall have
one piece of data ‘in focus’, with unprocessed data ahead of us
and processed data behind. We should expect something a bit like
Huet’s ‘zipper’ representation of one-hole contexts (Huet 1997),
but with different sorts of stuff either side of the hole.

In the case of our evaluator, suppose we proceed left-to-right.
Whenever we face an Add, we must first go left into the first
operand, recording the second Expr to process later; once we have
finished with the former, we must go right into the second operand,
recording the Int returned from the first; as soon as we have both
values, we can add. Correspondingly, a Stack of these direction-
with-cache choices completely determined where we are in the
evaluation process. Let’s make this structure explicit:2

type Stack = [Expr + Int]

Now we can implement an ‘eval machine’—a tail recursion, at each
stage stuck in the middle with an expression to decompose, loading
the stack by going left, or a value to use, unloading the stack and
moving right.

eval :: Expr → Int
eval e = load e []

load :: Expr → Stack → Int
load (Val i) stk = unload i stk
load (Add e1 e2) stk = load e1 (L e2 : stk)

unload :: Int → Stack → Int
unload v [] = v
unload v1 (L e2 : stk) = load e2 (R v1 : stk)
unload v2 (R v1 : stk) = unload (v1 + v2) stk

Each layer of this Stack structure is a dissection of Expr’s recursion
pattern. We have two ways to be stuck in the middle: we’re either
L e2, on the left with an Exprs waiting to the right of us, or R v1, on
the right with an Int cached to the left of us. Let’s find out how to
do this in general, calculating the ‘machine’ corresponding to any
old fold over finite first-order data.

2 For brevity, I write ·+ · for Either, L for Left and R for Right

Clowns and Jokers 1 2007/7/17

2. Polynomial Functors and Bifunctors
This section briefly recapitulates material which is quite standard. I
hope to gain some generic leverage by exploiting the characterisa-
tion of recursive datatypes as fixpoints of polynomial functors. For
more depth and detail, I refer the reader to the excellent ‘Algebra
of Programming’ (Bird and de Moor 1997).

If we are to work in a generic way with data structures, we need
to present them in a generic way. Rather than giving an individual
data declaration for each type we want, let us see how to build
them from a fixed repertoire of components. I’ll begin with the
polynomial type constructors in one parameter. These are generated
by constants, the identity, sum and product. I label them with a 1

subscript to distinguish them their bifunctorial cousins.

data K1 a x = K1 a -- constant
data Id x = Id x -- element
data (p +1 q) x = L1 (p x) | R1 (q x) -- choice
data (p ×1 q) x = (p x ,1 q x) -- pairing

Allow me to abbreviate one of my favourite constant functors, at
the same time bringing it into line with our algebraic style.

type 11 = K1 ()

Some very basic ‘container’ type constructors can be expressed
as polynomials, with the parameter giving the type of ‘elements’.
For example, the Maybe type constructor gives a choice between
‘Nothing’, a constant, and ‘Just’, embedding an element.

type Maybe = 11 +1 Id

Nothing = L1 (K1 ())
Just x = R1 (Id x)

Whenever I reconstruct a datatype from this kit, I shall make
a habit of ‘defining’ its constructors linearly in terms of the kit
constructors. To aid clarity, I use these pattern synonyms on either
side of a functional equation, so that the coded type acquires the
same programming interface as the original. This is not standard
Haskell, but these definitions may readily be expanded to code
which is fully compliant, if less readable.

The ‘kit’ approach allows us to establish properties of whole
classes of datatype at once. For example, the polynomials are all
functorial: we can make the standard Functor class

class Functor p where
fmap :: (s → t) → p s → p t

respect the polynomial constructs.

instance Functor (K1 a) where
fmap f (K1 a) = K1 a

instance Functor Id where
fmap f (Id s) = Id (f s)

instance (Functor p, Functor q) ⇒ Functor (p +1 q) where
fmap f (L1 p) = L1 (fmap f p)
fmap f (R1 q) = R1 (fmap f q)

instance (Functor p, Functor q) ⇒ Functor (p ×1 q) where
fmap f (p ,1 q) = (fmap f p ,1 fmap f q)

Our reconstructed Maybe is functorial without further ado.

2.1 Datatypes as Fixpoints of Polynomial Functors
The Expr type is not itself a polynomial, but its branching structure
is readily described by a polynomial. Think of each node of an Expr
as a container whose elements are the immediate sub-Exprs:

type ExprP = K1 Int +1 Id×1 Id

ValP i = L1 (K1 i)
AddP e1 e2 = R1 (Id e1 ,1 Id e2)

Correspondingly, we should hope to establish the isomorphism

Expr ∼= ExprP Expr

but we cannot achieve this just by writing

type Expr = ExprP Expr

for this creates an infinite type expression, rather than an infinite
type. Rather, we must define a recursive datatype which ‘ties the
knot’: µ p instantiates p’s element type with µ p itself.

data µ p = In (p (µ p))

Now we may complete our reconstruction of Expr

type Expr = µ ExprP

Val i = In (ValP i)
Add e1 e2 = In (AddP e1 e2)

Now, the container-like quality of polynomials allows us to
define a fold-like recursion operator for them, sometimes called
the iterator or the catamorphism.3 How can we compute a t from
a µ p? Well, we can expand a µ p tree as a p (µ p) container of
subtrees, use p’s fmap to compute ts recursively for each subtree,
then post-process the p t result container to produce a final result
in t . The behaviour of the recursion is thus uniquely determined by
the p-algebra φ :: p v → v which does the post-processing.

(| · |) :: Functor p ⇒ (p v → v) → µ p → v
(|φ|) (In p) = φ (fmap (|φ|) p)

For example, we can write our evaluator as a catamorphism, with
an algebra which implements each construct of our language for
values rather than expressions. The pattern synonyms for ExprP
help us to see what is going on:

eval :: µ ExprP → Int
eval = (|φ|) where

φ (ValP i) = i
φ (AddP v1 v2) = v1 + v2

Catamorphism may appear to have a complex higher-order re-
cursive structure, but we shall soon see how to turn it into a first-
order tail-recursion whenever p is polynomial. We shall do this by
dissecting p, distinguishing the ‘clown’ elements left of a chosen
position from the ‘joker’ elements to the right.

2.2 Polynomial Bifunctors
Before we can start dissecting, however, we shall need to be able to
manage two sorts of element. To this end, we shall need to introduce
the polynomial bifunctors, which are just like the functors, but with
two parameters.

data K2 a x y = K2 a
data Fst x y = Fst x
data Snd x y = Snd y
data (p +2 q) x y = L2 (p x y) | R2 (q x y)
data (p ×2 q) x y = (p x y ,2 q x y)

type 12 = K2 ()

We have the analogous notion of ‘mapping’, except that we must
supply one function for each parameter.

3 Terminology is a minefield here: some people think of ‘fold’ as threading
a binary operator through the elements of a container, others as replacing
the constructors with an alternative algebra. The confusion arises because
the two coincide for lists. There is no resolution in sight.

Clowns and Jokers 2 2007/7/17

class Bifunctor p where
bimap :: (s1 → t1) → (s2 → t2) → p s1 s2 → p t1 t2

instance Bifunctor (K2 a) where
bimap f g (K2 a) = K2 a

instance Bifunctor Fst where
bimap f g (Fst x) = Fst (f x)

instance Bifunctor Snd where
bimap f g (Snd y) = Snd (g y)

instance (Bifunctor p, Bifunctor q) ⇒
Bifunctor (p +2 q) where

bimap f g (L2 p) = L2 (bimap f g p)
bimap f g (R2 q) = R2 (bimap f g q)

instance (Bifunctor p, Bifunctor q) ⇒
Bifunctor (p ×2 q) where

bimap f g (p ,2 q) = (bimap f g p ,2 bimap f g q)

It’s certainly possible to take fixpoints of bifunctors to obtain re-
cursively constructed container-like data: one parameter stands for
elements, the other for recursive sub-containers. These structures
support both fmap and a suitable notion of catamorphism. I can
recommend (Gibbons 2007) as a useful tutorial for this ‘origami’
style of programming.

2.3 Nothing is Missing
We are still short of one basic component: Nothing. We shall be
constructing types which organise ‘the ways to split at a position’,
but what if there are no ways to split at a position (because there
are no positions)? We need a datatype to represent impossibility
and here it is:

data Zero

Elements of Zero are hard to come by—elements worth speak-
ing of, that is. Correspondingly, if you have one, you can exchange
it for anything you want.

magic :: Zero → a
magic x = x ‘seq‘ error "we never get this far"

I have used Haskell’s seq operator to insist that magic evaluate its
argument. This is necessarily ⊥, hence the error clause can never
be executed. In effect magic refutes its input.

We can use p Zero to represent ‘ps with no elements’. For ex-
ample, the only inhabitant of [Zero] mentionable in polite society
is []. Zero gives us a convenient way to get our hands on exactly the
constants, common to every instance of p. Accordingly, we should
be able to embed these constants into any other instance:

inflate :: Functor p ⇒ p Zero → p x
inflate = fmap magic

However, it’s rather a lot of work traversing a container just to
transform all of its nonexistent elements. If we cheat a little, we
can do nothing much more quickly, and just as safely!

inflate :: Functor p ⇒ p Zero → p x
inflate = unsafeCoerce]

This unsafeCoerce] function behaves operationally like λx → x ,
but its type, a → b, allows the programmer to intimidate the
typechecker into submission. It is usually present but well hidden in
the libraries distributed with Haskell compilers, and its use requires
extreme caution. Here we are sure that the only Zero computations
mistaken for x s will fail to evaluate, so our optimisation is safe.

Now that we have Zero, allow me to abbreviate

type 01 = K1 Zero
type 02 = K2 Zero

3. Clowns, Jokers and Dissection
We shall need three operators which take polynomial functors to
bifunctors. Let me illustrate them: consider functors parametrised
by elements (depicted •) and bifunctors are parametrised by clowns
(J) to the left and jokers (I) to the right. I show a typical p x as a
container of •s

{−•−•−•−•−•−}
Firstly, ‘all clowns’ p lifts p uniformly to the bifunctor which

uses its left parameter for the elements of p.

{−J−J−J−J−J−}
We can define this uniformly:

data p c j = (p c)

instance Functor f ⇒ Bifunctor (f) where
bimap f g (pc) = (fmap f pc)

Note that Id ∼= Fst.
Secondly, ‘all jokers’ p is the analogue for the right parameter.

{−I−I−I−I−I−}

data p c j = (p j)

instance Functor f ⇒ Bifunctor (f) where
bimap f g (pj) = (fmap g pj)

Note that Id ∼= Snd.
Thirdly, ‘dissected’ p takes p to the bifunctor which chooses

a position in a p and stores clowns to the left of it and jokers to the
right.

{−J−J−◦−I−I−}
We must clearly define this case by case. Let us work informally
and think through what to do each polynomial type constructor.
Constants have no positions for elements,

{−}
so there is no way to dissect them:

(K1 a) = 02

The Id functor has just one position, so there is just one way to
dissect it, and no room for clowns or jokers, left or right.

{−•−} −→ {−◦−}

Id = 12

Dissecting a p +1 q , we get either a dissected p or a dissected q .

L1 {−•−•−•−} −→ L2 {−J−◦−I−}
R1 {−•−•−•−} −→ R2 {−J−◦−I−}

(p +1 q) = p +2 q

So far, these have just followed Leibniz’s rules for the derivative,
but for pairs p×1q we see the new twist. When dissecting a pair, we
choose to dissect either the left component (in which case the right
component is all jokers) or the right component (in which case the
left component is all clowns).

({−•−•−•−},1 {−•−•−•−}) −→


L2 ({−J−◦−I−},2 {−I−I−I−})
R2 ({−J−J−J−},2 {−J−◦−I−})

(p ×1 q) = p ×2 q +2 p ×2 q

Now, in Haskell, this kind of type-directed definition can be done
with type-class programming (Hallgren 2001; McBride 2002). Al-
low me to abuse notation very slightly, giving dissection constraints
a slightly more functional notation, after the manner of (Neubauer
et al. 2001):

Clowns and Jokers 3 2007/7/17

class (Functor p, Bifunctor p̂) ⇒ p 7→ p̂ | p → p̂ where
-- methods to follow

In ASCII, p 7→ p̂ is rendered relationally as Diss p p’’, but
the annotation |p → p̂ is a functional dependency, indicating that
p determines p̂, so it is appropriate to think of · as a functional
operator, even if we can’t quite treat it as such in practice.

I shall extend this definition and its instances with operations
shortly, but let’s start by translating our informal program into type-
class Prolog:

instance (K1 a) 7→ 02

instance Id 7→ 12

instance (p 7→ p̂, q 7→ q̂) ⇒
p +1 q 7→ p̂ +2 q̂

instance (p 7→ p̂, q 7→ q̂) ⇒
p ×1 q 7→ p̂×2 q +2 p ×2 q̂

Before we move on, let us just check that we get the answer we
expect for our expression example.

K1 Int +1 Id×1 Id 7→ 02 +2 12 ×2 Id +2 Id×2 12

A bit of simplification tells us:

ExprP Int Expr ∼= Expr + Int

Dissection (with values to the left and expressions to the right) has
calculated the type of layers of our stack!

4. How to Creep Gradually to the Right
If we’re serious about representing the state of a traversal by a
dissection, we had better make sure that we have some means to
move from one position to the next. In this section, we’ll develop
a method for the p 7→ p̂ class which lets us move rightward one
position at a time. I encourage you to move leftward yourselves.

What should be the type of this operation? Consider, firstly,
where our step might start. If we follow the usual trajectory, we’ll
start at the far left—and to our right, all jokers.

↓{−I−I−I−I−I−}
Once we’ve started our traversal, we’ll be in a dissection. To be
ready to move, we we must have a clown to put into the hole.

J↓{−J−J−◦−I−I−}
Now, think about where our step might take us. If we end up at

the next position, out will pop the next joker, leaving the new hole.

{−J−J−J−◦−I−}↓I
But if there are no more positions, we’ll emerge at the far right, all
clowns.

{−J−J−J−J−J−}↓
Putting this together, we add to class p 7→ p̂ the method

right :: p j + (p̂ c j , c) → (j , p̂ c j) + p c

Let me show you how to implement the instances by pretending
to write a polytypic function after the manner of (Jansson and
Jeuring 1997), showing the operative functor in a comment.

right{-p -} :: p j + (p c j , c) → (j , p c j) + p c

You can paste each clause of right {-p-} into the corresponding
p 7→ · instance.

For constants, we jump all the way from far left to far right in
one go; we cannot be in the middle, so we refute that case.

right{-K1 a -} x = case x of
L (K1 a) → R (K1 a)
R (K2 z , c) → magic z

We can step into a single element, or step out.

right{-Id x -} x = case x of
L (Id j) → L (j , K2 ())
R (K2 (), c) → R (Id c)

For sums, we make use of the instance for whichever branch is
appropriate, being careful to strip tags beforehand and replace them
afterwards.

right{-p +1 q -} x = case x of
L (L1 pj) → mindp (right{-p -} (L pj))
L (R1 qj) → mindq (right{-q -} (L qj))
R (L2 pd , c) → mindp (right{-p -} (R (pd , c)))
R (R2 qd , c) → mindq (right{-q -} (R (qd , c)))
where

mindp (L (j , pd)) = L (j , L2 pd)
mindp (R pc) = R (L1 pc)
mindq (L (j , qd)) = L (j , R2 qd)
mindq (R qc) = R (R1 qc)

For products, we must start at the left of the first component and
end at the right of the second, but we also need to make things
join up in the middle. When we reach the far right of the first
component, we must continue from the far left of the second.

right{-p ×1 q -} x = case x of
L (pj ,1 qj) → mindp (right{-p -} (L pj)) qj
R (L2 (pd ,2 qj), c) → mindp (right{-p -} (R (pd , c))) qj
R (R2 (pc ,2 qd), c) → mindq pc (right{-q -} (R (qd , c)))
where

mindp (L (j , pd)) qj = L (j , L2 (pd ,2 qj))
mindp (R pc) qj = mindq pc (right{-q -} (L qj))
mindq pc (L (j , qd)) = L (j , R2 (pc ,2 qd))
mindq pc (R qc) = R (pc ,1 qc)

Let’s put this operation straight to work. If we can dissect p,
then we can make its fmap operation tail recursive. Here, the jokers
are the source elements and the clowns are the target elements.

tmap :: p 7→ p̂ ⇒ (s → t) → p s → p t
tmap f ps = continue (right{-p -} (L ps)) where

continue (L (s, pd)) = continue (right{-p -} (R (pd , f s)))
continue (R pt) = pt

4.1 Tail-Recursive Catamorphism
If we want to define the catamorphism via dissection, we could just
replace fmap by tmap in the definition of (| · |), but that would
be cheating! The point, after all, is to turn a higher-order recursive
program into a tail-recursive machine. We need some kind of stack.

Suppose we have a p-algebra, φ::p v → v , and we’re traversing
a µ p depth-first, left-to-right, in order to compute a ‘value’ in v . At
any given stage, we’ll be processing a given node, in the middle of
traversing her mother, in the middle of traversing her grandmother,
and so on in a maternal line back to the root. We’ll have visited
all the nodes left of this line and thus have computed vs for them;
right of the line, each node will contain a µ p waiting for her turn.
Correspondingly, our stack is a list of dissections:

[p v (µ p)]

We start, ready to load a tree, with an empty stack.

tcata :: p 7→ p̂ ⇒ (p v → v) → µ p → v
tcata φ t = load φ t []

To load a node, we unpack her container of subnodes and step in
from the far left.

Clowns and Jokers 4 2007/7/17

load :: p 7→ p̂ ⇒ (p v → v) → µ p → [p̂ v (µ p)] → v
load φ (In pt) stk = next φ (right{-p -} (L pt)) stk

After a step, we might arrive at another subnode, in which case
we had better load her, suspending our traversal of her mother by
pushing the dissection on the stack.

next :: p 7→ p̂ ⇒ (p v → v) →
(µ p, p̂ v (µ p)) + p v → [p̂ v (µ p)] → v

next φ (L (t , pd)) stk = load φ t (pd : stk)
next φ (R pv) stk = unload φ (φ pv) stk

Alternatively, our step might have taken us to the far right of a node,
in which case we have all her subnodes’ values: we are ready to
apply the algebra φ to get her own value, and start unloading.

Once we have a subnode’s value, we may resume the traversal
of her mother, pushing the value into her place and moving on.

unload :: p 7→ p̂ ⇒ (p v → v) → v → [p̂ v (µ p)] → v
unload φ v (pd : stk) = next φ (right{-p -} (R (pd , v))) stk
unload φ v [] = v

On the other hand, if the stack is empty, then we’re holding the
value for the root node, so we’re done! As we might expect:

eval :: µ ExprP → Int
eval = tcata φ where

φ (ValP i) = i
φ (AddP v1 v2) = v1 + v2

5. Derivative Derived by Diagonal Dissection
The dissection of a functor is its bifunctor of one-hole contexts dis-
tinguishing ‘clown’ elements left of the hole from ‘joker’ elements
to its right. If we remove this distinction, we recover the usual no-
tion of one-hole context, as given by the derivative (McBride 2001;
Abbott et al. 2005b). Indeed, we’ve already seen, the rules for dis-
section just refine the centuries-old rules of the calculus with a left-
right distinction. We can undo this refinement by taking the diago-
nal of the dissection, identifying clowns with jokers.

∂p x = p x x

Let us now develop the related operations.

5.1 Plugging In
We can add another method to class p 7→ p̂,

plug :: x → p̂ x x → p x

saying, in effect, that if clowns and jokers coincide, we can fill the
hole directly and without any need to traverse all the way to the
end. The implementation is straightforward.

plug{-K1 a -} x (K2 z) = magic z

plug{-Id-} x (K2 ()) = Id x

plug{-p +1 q -} x (L2 pd) = L1 (plug{-p -} x pd)
plug{-p +1 q -} x (R2 qd) = R1 (plug{-q -} x qd)

plug{-p ×1 q -} x (L2 (pd ,2 qx)) = (plug{-p -} x pd ,1 qx)
plug{-p ×1 q -} x (R2 (px ,2 qd)) = (px ,1 plug{-q -} x qd)

5.2 Zipping Around
We now have almost all the equipment we need to reconstruct
Huet’s operations (Huet 1997), navigating a tree of type µ p for
some dissectable functor p.

zUp, zDown, zLeft, zRight :: p 7→ p̂ ⇒
(µ p, [p̂ (µ p) (µ p)]) → Maybe (µ p, [p̂ (µ p) (µ p)])

I leave zLeft as an exercise, to follow the implementation of the
leftward step operation, but the other three are straightforward uses
of plug{-p-} and right{-p-}. This implementation corresponds quite

closely to the Generic Haskell version from (Hinze et al. 2004), but
requires a little less machinery.

zUp (t , []) = Nothing
zUp (t , pd : pds) = Just (In (plug{-p -} t pd), pds)

zDown (In pt , pds) = case right{-p -} (L pt) of
L (t , pd) → Just (t , pd : pds)
R → Nothing

zRight (t , []) = Nothing
zRight (t :: µ p, pd : pds) = case right{-p -} (R (pd , t)) of

L (t ′, pd ′) → Just (t ′, pd ′ : pds)
R (:: p (µ p)) → Nothing

Notice that I had to give the typechecker a little help in the
definition of zRight. The trouble is that · is not known to be
invertible, so when we say right{-p-} (R (pd , t)), the type of pd
does not actually determine p—it’s easy to forget that the{-p-} is
only a comment. I’ve forced the issue by collecting p from the type
of the input tree and using it to fix the type of the ‘far right’ failure
case. This is perhaps a little devious, but when type inference is
compulsory, what can one do?

6. Division: No Clowns!
The derivative is not the only interesting special case of dissection.
In fact, my original motivation for inventing dissection was to find
an operator `· for ‘leftmost’ on suitable functors p which would
induce an isomorphism reminiscent of the ‘remainder theorem’ in
algebra.

p x ∼= (x , `p x) + p Zero

This `p x is the ‘quotient’ of p x on division by x , and
it represents whatever can remain after the leftmost element in
a p x has been removed. Meanwhile, the ‘remainder’, p Zero,
represents those ps with no elements at all. Certainly, the finitely-
sized containers should give us this isomorphism, but what is `·?
It’s the context of the leftmost hole. It should not be possible to
move any further left, so there should be no clowns! We need

`p x = p Zero x

For the polynomials, we shall certainly have

divide :: p 7→ p̂ ⇒ p x → (x , p̂ Zero x) + p Zero
divide px = right{-p -} (L px)

To compute the inverse, I could try waiting for you to implement
the leftward step: I know we are sure to reach the far left, for your
only alternative is to produce a clown! However, an alternative is at
the ready. I can turn a leftmost hole into any old hole if I have

inflateFst :: Bifunctor p ⇒ p Zero y → p x y
inflateFst = unsafeCoerce] -- faster than bimap magic id

Now, we may just take

divide` :: p 7→ p̂ ⇒ (x , p̂ Zero x) + p Zero → p x
divide` (L (x , pl)) = plug{-p -} x (inflateFst pl)
divide` (R pz) = inflate pz

It is straightforward to show that these are mutually inverse by
induction on polynomials.

7. A Generic Abstractor
So far this has all been rather jolly, but is it just a mathematical
amusement? Why should I go to the trouble of constructing an
explicit context structure, just to write a fold you can give directly
by higher-order recursion? By way of a finale, let me present a
more realistic use-case for dissection, where we exploit the first-
order representation of the context by inspecting it: the task is to

Clowns and Jokers 5 2007/7/17

abstract all occurrences of one term from another, in a generic first-
order syntax.

7.1 Free Monads and Substitution
What is a ‘generic first-order syntax’? A standard way to get hold
of such a thing is to define the free monad p∗ of a (container-like)
functor p (Barr and Wells 1984).

data p∗ x = V x | C (p (p∗ x))

The idea is that p represents the signature of constructors in our
syntax, just as it represented the constructors of a datatype in the
µ p representation. The difference here is that p∗ x also contains
free variables chosen from the set x . The monadic structure of p∗

is that of substitution.
instance Functor p ⇒ Monad (p∗) where

return x = V x
V x >>= σ = σ x
C pt >>= σ = C (fmap (>>=σ) pt)

Here >>= is the simultaneous substitution from variables in one set
to terms over another. However, it’s easy to build substitution for
a single variable on top of this. If we a term t over Maybe x , we
can substitute some s for the distinguished variable, Nothing. Let
us rename Maybe to S, ‘successor’, for the occasion:

type S = Maybe

(º) :: Functor p ⇒ p∗ (S x) → p∗ x → p∗ x
t º s = t >>= σ where

σ Nothing = s
σ (Just x) = V x

Our mission is to compute the ‘most abstract’ inverse to (ºs), for
suitable p and x , some

(¹) :: ... ⇒ p∗ x → p∗ x → p∗ (S x)

such that (t ¹ s) º s = t , and moreover that fmap Just s occurs
nowhere in t ¹s . In order to achieve this, we’ve got to abstract every
occurrence of s in t as V Nothing and apply Just to all the other
variables. Taking t ¹ s = fmap Just t is definitely wrong!

7.2 Indiscriminate Stop-and-Search
The obvious approach to computing t ¹ s is to traverse t checking
everywhere if we’ve found s . We shall need to be able to test equal-
ity of terms, so we first must confirm that our signature functor p
preserves equality, i.e., that we can lift equality eq on x to equality
· deqe · on p x .

class PresEq p where
· d·e · ::(x → x → Bool) → p x → p x → Bool

instance Eq a ⇒ PresEq (K1 a) where
K1 a1 deqe K1 a2 = a1 ≡ a2

instance PresEq Id where
Id x1 deqe Id x2 = eq x1 x2

instance (PresEq p, PresEq q) ⇒ PresEq (p +1 q) where
L1 p1 deqe L1 p2 = p1 deqe p2
R1 q1 deqe R1 q2 = q1 deqe q2
deqe = False

instance (PresEq p, PresEq q) ⇒ PresEq (p ×1 q) where
(p1 ,1 q1) deqe (p2 ,1 q2) = p1 deqe p2 ∧ q1 deqe q2

instance (PresEq p, Eq x) ⇒ Eq (p∗ x) where
V x ≡ V y = x ≡ y
C ps ≡ C pt = ps d≡e pt

≡ = False

We can now make our first attempt:

(¹) :: (Functor p, PresEq p, Eq x) ⇒ p∗ x → p∗ x → p∗ (S x)
t ¹ s | t ≡ s = V Nothing
V x ¹ s = V (Just x)
C pt ¹ s = C (fmap (¹s) pt)

Here, I’m exploiting Haskell’s Boolean guards to test for a match
first: only if the fails do we fall through and try to search more
deeply inside the term. This is short and obviously correct, but it’s
rather inefficient. If s is small and t is large, we shall repeatedly
compare s with terms which are far too large to stand a chance of
matching. It’s rather like testing if xs has suffix ys like this.

hasSuffix :: Eq x ⇒ [x] → [x] → Bool
hasSuffix xs ys | xs ≡ ys = True
hasSuffix [] ys = False
hasSuffix (x : xs) ys = hasSuffix xs ys

If we ask hasSuffix "xxxxxxxxxxxx" "xxx", we shall test if
’x’ ≡ ’x’ thirty times, not three. It’s more efficient to reverse
both lists and check once for a prefix. With fast reverse, this takes
linear time.

hasSuffix :: Eq x ⇒ [x] → [x] → Bool
hasSuffix xs ys = hasPrefix (reverse xs) (reverse ys)

hasPrefix :: Eq x ⇒ [x] → [x] → Bool
hasPrefix xs [] = True
hasPrefix (x : xs) (y : ys) | x ≡ y = hasPrefix xs ys
hasPrefix = False

7.3 Hunting for a Needle in a Stack
We can adapt the ‘reversal’ idea to our purposes. The divide func-
tion tells us how to find the leftmost position in a polynomial con-
tainer, if it has one. If we iterate divide, we can navigate our way
down the left spine of a term to its leftmost leaf, stacking the con-
texts as we go. That’s a way to reverse a tree!

A leaf is either a variable or a constant. A term either is a leaf
or has a leftmost subterm. To see this, we just need to adapt divide
for the possibility of variables.

data Leaf p x = VL x | CL (p Zero)

leftOrLeaf :: p 7→ p̂ ⇒
p∗ x → (p∗ x , p̂ Zero (p∗ x)) + Leaf p x

leftOrLeaf (V x) = R (VL x)
leftOrLeaf (C pt) = fmap CL (divide pt)

Now we can reverse the term we seek into the form of a ‘needle’—a
leaf with a straight spine of leftmost holes running all the way back
to the root

needle :: p 7→ p̂ ⇒ p∗ x → (Leaf p x , [p̂ Zero (p∗ x)])
needle t = grow t [] where

grow t pls = case leftOrLeaf t of
L (t ′, pl) → grow t ′ (pl : pls)
R l → (l , pls)

Given this needle representation of the search term, we can imple-
ment the abstraction as a stack-driven traversal, hunt which tries for
a match only when it reaches a suitable leaf. We need only check
for our needle when we’re standing at the end of a left spine at least
as long. Let us therefore split our ‘state’ into an inner left spine and
an outer stack of dissections.

(¹) :: (p 7→ p̂, PresEq p, PresEq2 p̂, Eq x) ⇒
p∗ x → p∗ x → p∗ (S x)

t ¹ s = hunt t [] [] where
(neel ,nees) = needle s
hunt t spi stk = case leftOrLeaf t of

L (t ′, pl) → hunt t (pl : spi) stk
R l → check spi nees (l ≡ neel)

where
check = · · ·

Clowns and Jokers 6 2007/7/17

Current technology for type annotations makes it hard for me to
write hunt’s type in the code. Informally, it’s this:

hunt :: p∗ x → [`p (p∗ x)] → [p (p∗ (S x)) (p∗ x)] →
p∗ (S x)

Now, check is rather like hasPrefix, except that I’ve used a little
accumulation to ensure the expensive equality tests happen after
the cheap length test.

check spi ′ [] True = next (V Nothing) (spi ′ ↑++ stk)
check (spl : spi ′) (npl : nees ′) b =

check spi ′ nees ′ (b ∧ spl dmagic |≡e npl)
check = next (leafS l) (spi ↑++ stk) where

leafS (VL x) = V (Just x)
leafS (CL pz) = C (inflate pz)

For the equality tests we need · d· | ·e ·, the bifunctorial analogue of
· d·e ·, although as we’re working with `p, we can just use magic to
test equality of clowns. The same trick works for Leaf equality:

instance (PresEq p, Eq x) ⇒ Eq (Leaf p x) where
VL x ≡ VL y = x ≡ y
CL a ≡ CL b = a dmagice b

≡ = False

Now, instead of returning a Bool, check must explain how to
move on. If our test succeeds, we must move on from our matching
subterm’s position, abstracting it: we throw away the matching
prefix of the spine and stitch its suffix onto the stack. However, if
the test fails, we must move right from the current leaf ’s position,
injecting it into p∗ (S x) and stitching the original spine to the
stack. Stitching (↑++) is just a version of ‘append’ which inflates a
leftmost hole to a dissection.

(↑++) :: Bifunctor p ⇒ [p Zero y] → [p x y] → [p x y]
[] ↑++ pxys = pxys
(pzy : pzys) ↑++ pxys = inflateFst pzy : pzys ↑++ pxys

Correspondingly, next tries to move rightwards given a ‘new’
term and a stack. If we can go right, we get the next ‘old’ term
along, so we start hunting again with an empty spine.

next t ′ (pd : stk) = case right{-p -} (R (pd , t ′)) of
L (t , pd ′) → hunt t [] (pd ′ : stk)
R pt ′ → next (C pt ′) stk

next t ′ [] = t ′

If we reach the far right of a p, we pack it up and pop on out. If we
run out of stack, we’re done!

8. Discussion
The story of dissection has barely started, but I hope I have com-
municated the intuition behind it and sketched some of its poten-
tial applications. Of course, what’s missing here is a more semantic
characterisation of dissection, with respect to which the operational
rules for p may be justified.

It is certainly straightforward to give a shapes-and-positions
analysis of dissection in the categorical setting of containers (Ab-
bott et al. 2005a), much as we did with the derivative (Abbott et al.
2005b). The basic point is that where the derivative requires ele-
ment positions to have decidable equality (‘am I in the hole?’), dis-
section requires a total order on positions with decidable trichotomy
(‘am I in the hole, to the left, or to the right?’). The details, however,
deserve a paper of their own.

I have shown dissection for polynomials here, but it is clear that
we can go much further. For example, the dissection of list gives a
list of clowns and a list of jokers:

[] = []×2 []

Meanwhile, the chain rule, for functor composition, becomes

(p ◦1 q) = q ×2 (p) ◦2 (q ; q)

where

data (p ◦2 (q ; r)) c j = (p (q c j) (r c j)) ◦2 (·; ·)
That is, we have a dissected p, with clown-filled qs left of the hole,
joker-filled qs right of the hole, and a dissected q in the hole. If you
specialise this to division, you get

`(p ◦1 q) x ∼= `q x × p (q Zero) (q x)

The leftmost x in a p (q x) might not be in a leftmost p position:
there might be q-leaves to the left of the q-node containing the
first element. That is why it was necessary to invent · to define
`·, an operator which deserves further study in its own right. For
finite structures, its iteration gives rise to a power series formulation
of datatypes directly, finding all the elements left-to-right, where
iterating ∂· finds them in any order. There is thus a significant
connection with the notion of combinatorial species as studied by
Joyal (Joyal 1986) and others.

The whole development extends readily to the multivariate case,
although this a little more than Haskell can take at present. The
general i dissects a mutli-sorted container at a hole of sort i ,
and splits all the sorts into clown- and joker-variants, doubling
the arity of its parameter. The corresponding `i finds the contexts
in which an element of sort i can stand leftmost in a container.
This corresponds exactly to Brzozowski’s notion of the ‘partial
derivative’ of a regular expression (Brzozowski 1964).

But if there is a message for programmers and programming
language designers, it is this: the miserablist position that types
exist only to police errors is thankfully no longer sustainable, once
we start writing programs like this. By permitting calculations of
types and from types, we discover what programs we can have, just
for the price of structuring our data. What joy!

References
Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers

- constructing strictly positive types. Theoretical Computer Sci-
ence, 342:3–27, September 2005a. Applied Semantics: Selected
Topics.

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor
McBride. ∂ for data: derivatives of data structures. Fundamenta
Informaticae, 65(1&2):1–28, 2005b.

Michael Barr and Charles Wells. Toposes, Triples and Theories,
chapter 9. Number 278 in Grundlehren der Mathematischen
Wissenschaften. Springer, New York, 1984.

Richard Bird and Oege de Moor. Algebra of Programming. Pren-
tice Hall, 1997.

Janusz Brzozowski. Derivatives of regular expressions. Journal of
the ACM, 11(4):481–494, 1964.

Jeremy Gibbons. Datatype-generic programming. In Roland Back-
house, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors,
Spring School on Datatype-Generic Programming, volume 4719
of Lecture Notes in Computer Science. Springer-Verlag, 2007.
To appear.

Thomas Hallgren. Fun with functional dependencies. In Joint
Winter Meeting of the Departments of Science and Computer
Engineering, Chalmers University of Technology and Goteborg
University, Varberg, Sweden., January 2001.

Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data
types. Science of Computer Programmming, 51:117–151, 2004.

Clowns and Jokers 7 2007/7/17

Gérard Huet. The Zipper. Journal of Functional Programming, 7
(5):549–554, 1997.

Patrik Jansson and Johan Jeuring. PolyP—a polytypic program-
ming language extension. In Proceedings of POPL ’97, pages
470–482. ACM, 1997.

André Joyal. Foncteurs analytiques et espéces de structures. In
Combinatoire énumérative, number 1234 in LNM, pages 126 –
159. 1986.

Conor McBride. The Derivative of a Regular Type is its Type of
One-Hole Contexts. Available at http://www.cs.nott.ac.
uk/∼ctm/diff.pdf, 2001.

Conor McBride. Faking It (Simulating Dependent Types in
Haskell). Journal of Functional Programming, 12(4& 5):375–
392, 2002. Special Issue on Haskell.

Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and
Michael Sperber. A Functional Notation for Functional De-
pendencies. In The 2001 ACM SIGPLAN Haskell Workshop,
Firenze, Italy, September 2001.

Clowns and Jokers 8 2007/7/17

