FUNCTIONAL PEARL

Why walk when you can take the tube?

LUCAS DIXON

University of Edinburgh
PETER HANCOCK and CONOR MCBRIDE
University of Nottingham

Abstract

Mornington Crescent

\section*{1 Introduction}

The purpose of this paper is not only self-citation (McBride, 2001; McBride \& Paterson, 2006), but also to write a nice wee program.

2 Polynomial Traversable Functors

```
newtype C c x = C c
instance Traversable (C c) where
    traverse f(C c) = pure (C c)
newtype X x = X x
instance Traversable X where
    traverse f(\mathbf{X }x)=\mathrm{ pure X *fx}
data (p\boxplusq) x = InL ( p x ) | InR (qx)
instance (Traversable p, Traversable q) => Traversable ( }p\boxplusq\mathrm{ ) where
    traverse f(InL xp) = pure InL * traverse f xp
    traverse f(InR xq)= pure InR * traverse fxq
data (p\boxtimesq) x = px\boxtimesqx
instance (Traversable p, Traversable q) => Traversable ( }p\boxtimesq)\mathrm{ where
    traverse f(xp\boxtimesxq)=\mathrm{ pure (|) }\circledast\mathrm{ traverse fxp }\circledast\mathrm{ traverse f xq}
newtype (p\squareq) x = Comp (p (qx))
instance (Traversable p, Traversable q) => Traversable (p\squareq) where
    traverse f(Comp xqp) = pure Comp * traverse (traverse f) xqp
```


3 Free Monads

The free monad construction lifts any functorial signature p of operations to a syntax of expressions constructed from those operations and from free variables x.

```
data Term px=Con (p(Term px))| Var x
```

The return of the Monad embeds free variables into the syntax. The \gg is exactly the simultaneous substitution operator. Below, f takes variables in x to expressions in Term $p y ;(\gg f)$ delivers the corresponding action on expressions in Term $p x$.

```
instance Functor \(p \Rightarrow\) Monad (Term \(p\) ) where
    return \(=\) Var
    \(\operatorname{Var} x \gg f=f x\)
    Con \(t p \gg f=\) Con \((\mathrm{fmap}(\gg f) t p)\)
```

Correspondingly, Term p is also Applicative and a Functor. Moreover, if p is Traversable, then so is Term p.

```
instance Traversable p=> Traversable (Term p) where
    traverse f (Var x) = pure Var *f 
    traverse f(Con tp)= pure Con }\circledast\mathrm{ traverse (traverse f) tp
```

By way of example, we choose a simple signature with constant integer values and a binary operator ${ }^{1}$. As one might expect, $\cdot \boxplus \cdot$ delivers choice and $\cdot \boxtimes \cdot$ delivers pairing. Meanwhile X marks the spot for each subexpression.
type Sig $=C$ Int $\boxplus X \boxtimes X$
Now we can implement the constructors we first thought of, just by plugging Con together with the constructors of the polynommial functors in Sig.

```
val :: Int \(\rightarrow\) Term Sig \(x\)
val \(i=\operatorname{Con}(\operatorname{lnL}(\mathrm{C} i))\)
add \(::\) Term Sig \(x \rightarrow\) Term Sig \(x \rightarrow\) Term Sig \(x\)
add \(x y=\operatorname{Con}(\operatorname{lnR}(\mathbf{X} x \boxtimes \mathbf{X} y))\)
```


4 The \emptyset Type

We can recover the idea of a closed term by introducing the \emptyset type, beloved of logicians but sadly too often spurned by programmers.

data \emptyset

Bona fide elements of \emptyset are hard to come by, so we may safely offer to exchange them for anything you might care to want: as you will be paying with bogus currency, you cannot object to our shoddy merchandise.

[^0]```
naughtE ::\emptyset ->a
naughtE _}=
```

More crucially, naughtE lifts functorially. The type $f \emptyset$ represents the 'base cases' of $f$ which exist uniformly regardless of $f$ 's argument. For example, [] :: [ $\emptyset]$, Nothing :: Maybe $\emptyset$ and $\mathrm{C} 3:: \operatorname{Sig} \emptyset$. We can map these terms into any $f a$, just by turning all the elements of $\emptyset$ we encounter into elements of $a$.

```
inflate :: Functor f=>f\emptyset->fa
inflate = unsafeCoerce # -- fmap naughtE - could be unsafeCoerce
```

Thus equipped, we may take Term $p \emptyset$ to give us the closed terms over signature $p$. Modulo the usual fuss about bottoms, Term $p \emptyset$ is just the usual recursive datatype given by taking the fixpoint of $p$. The general purpose 'evaluator' for closed terms is just the usual notion of catamorphism.

```
cata :: (Functor p) =(pv->v) }->\mathrm{ Term p }\emptyset->
cata operate (Var nonsense) = naughtE nonsense
cata operate (Con expression) = operate (fmap (cata operate) expression)
```

Following our running example, we may take

```
sigOps :: Sig Int \(\rightarrow\) Int
\(\operatorname{sigOps}(\operatorname{lnL}(\mathrm{C} i))=i\)
\(\operatorname{sig} \mathrm{Ops}(\operatorname{lnR}(\mathrm{X} x \boxtimes \mathrm{X} y))=x+y\)
```

and now

```
cata sigOps (add (val 2) (val 2)) = 4
```

We shall also make considerable use of $\emptyset$ in a moment, when we start making holes in polynomials.

## 5 Differentiating Polynomials

class (Traversable $p$, Traversable $\left.p^{\prime}\right) \Rightarrow \partial p \mapsto p^{\prime} \mid p \rightarrow p^{\prime}$ where
$(\lessdot):: p^{\prime} x \rightarrow x \rightarrow p x$
down :: $p x \rightarrow p\left(p^{\prime} x, x\right)$
downright fmap snd (down $x f$ ) $=x f$
downhome fmap (uncurry $(<)$ ) (down $x f$ ) $=$ fmap (const $x f$ ) $x f$
instance $\partial(\mathrm{C} c) \mapsto \mathrm{C} \emptyset$ where
$\mathrm{C} z<_{-}=$naughtE $z$
down (C $c$ ) $=\mathrm{C} c$
instance $\partial \mathrm{X} \mapsto \mathrm{C}()$ where
C()$<x=\mathrm{X} x$
down $(\mathrm{X} x)=\mathrm{X}(\mathrm{C}(), x)$

```
instance \(\left(\partial p \mapsto p^{\prime}, \partial q \mapsto q^{\prime}\right) \Rightarrow \partial(p \boxplus q) \mapsto p^{\prime} \boxplus q^{\prime}\) where
 \(\operatorname{lnL} p^{\prime}<x=\operatorname{InL}\left(p^{\prime}<x\right)\)
 \(\operatorname{lnR} q^{\prime} \lessdot x=\ln \mathrm{R}\left(q^{\prime}<x\right)\)
 down \((\operatorname{lnL} p)=\operatorname{lnL}(\operatorname{fmap}(\operatorname{lnL} \times \mathrm{id})(\) down \(p))\)
 down \((\operatorname{lnR} q)=\operatorname{lnR}(\operatorname{fmap}(\operatorname{lnR} \times\) id \()(\) down \(q))\)
instance \(\left(\partial p \mapsto p^{\prime}, \partial q \mapsto q^{\prime}\right) \Rightarrow \partial(p \boxtimes q) \mapsto p^{\prime} \boxtimes q \boxplus p \boxtimes q^{\prime}\) where
 \(\operatorname{lnL}\left(p^{\prime} \boxtimes q\right)<x=\left(p^{\prime}<x\right) \boxtimes q\)
 \(\operatorname{lnR}\left(p \boxtimes q^{\prime}\right) \lessdot x=p \boxtimes\left(q^{\prime} \lessdot x\right)\)
 down \((p \boxtimes q)=\)
 fmap \(((\operatorname{lnL} \cdot(\boxtimes q)) \times\) id \()(\) down \(p) \boxtimes\) fmap \(((\operatorname{lnR} \cdot(p \boxtimes)) \times\) id) (down \(q)\)
instance \(\left(\partial p \mapsto p^{\prime}, \partial q \mapsto q^{\prime}\right) \Rightarrow \partial(p \boxtimes q) \mapsto\left(p^{\prime} \boxtimes q\right) \boxtimes q^{\prime}\) where
 \(\left(\operatorname{Comp} p^{\prime} \boxtimes q^{\prime}\right)<x=\operatorname{Comp}\left(p^{\prime}<q^{\prime}<x\right)\)
 down \((\operatorname{Comp} x q p)=\operatorname{Comp}(f m a p\) outer \((\) down \(x q p))\) where
 outer \(\left(p^{\prime}, x q\right)=\) fmap inner \((\) down \(x q)\) where
 inner \(\left(q^{\prime}, x\right)=\left(\operatorname{Comp} p^{\prime} \boxtimes q^{\prime}, x\right)\)
```


## 6 Differentiating Free Monads

A one-hole context in the syntax of Terms generated by the free monad construction is just a sequence of one-hole contexts for subterms in terms, as given by differentiating the signature functor.

$$
\text { newtype } \partial p \mapsto p^{\prime} \Rightarrow \text { Tube } p p^{\prime} x=\text { Tube }\left[p^{\prime}(\operatorname{Term} p x)\right]
$$

Tubes are Traversable Functors. They also inherit a Monoid structure from their underlying representation of sequences. Exactly which sequence structure you should use depends on the operations you need to support. As in (McBride, 2001), we are just using good old [] for pedagogical simplicity. At the time, Ralf Hinze, Johan Jeuring and Andres Löh pointed out (2004), this choice does not yield constanttime navigation operations in the style of Huet's 'zippers' (1997), and I am sure they would not forgive us this time if we failed to mention that replacing [] by 'snoc-lists' which grow on the right restores this facility.

Let us give an interface to contexts. We shall need the Monoid structure:

```
instance Monoid (Tube \(p p^{\prime} x\)) where
 \(\varepsilon=\) Tube []
 ctxt \(\oplus \quad\) Tube [] = ctxt
 Tube \(d s \oplus\) Tube \(d s^{\prime}=\) Tube \(\left(d s+d s^{\prime}\right)\)
```

We may construct a one-step context for Term $p$ from a one-hole context for subterms in a $p$.

```
step :: \partialp\mapsto p}=>\mp@subsup{p}{}{\prime}=>\mp@subsup{p}{}{\prime}(\mathrm{ Term px) }->\mathrm{ Tube p p ' }
step d}=\mathrm{ Tube [d]
```

Plugging a Term into a Tube just iterates $<$ for $p$.

```
\((\ll):: \partial p \mapsto p^{\prime} \Rightarrow\) Tube \(p p^{\prime} x \rightarrow\) Term \(p x \rightarrow\) Term \(p x\)
Tube [] \(\ll t=t\)
Tube \((d: d s) \ll t=\operatorname{Con}(d \lessdot\) Tube \(d s \ll t)\)
```

Moreover, anyplace you can plug a subterm is certainly a place you can plug a variable, and vice versa. We shall also have

```
instance \(\partial p \mapsto p^{\prime} \Rightarrow \partial(\) Term \(p) \mapsto\) Tube \(p p^{\prime}\) where
 \(c t x t<x=c t x t \ll \operatorname{Var} x\)
 down \((\operatorname{Var} x)=\operatorname{Var}(\varepsilon, x)\)
 down \((\operatorname{Con} t p)=\) Con \((\) fmap outer \((\) down \(t p))\) where
 outer \(\left(p^{\prime}, t\right)=\mathrm{fmap}\) inner (down \(t\)) where
 inner \((c t x t, x)=\left(\right.\) step \(\left.p^{\prime} \oplus c t x t, x\right)\)
```

            7 Going Underground
    data $\partial p \mapsto p^{\prime} \Rightarrow$ Underground $p p^{\prime} x$
$=$ Ground (Term $p \emptyset$ )
| Tube $p p^{\prime} \emptyset:<$ Node $p p^{\prime} x$
data $\partial p \mapsto p^{\prime} \Rightarrow$ Node $p p^{\prime} x$
$=$ Terminus $x$
| Junction ( $p$ (Underground $\left.p p^{\prime} x\right)$ )
var $:: \partial p \mapsto p^{\prime} \Rightarrow x \rightarrow$ Underground $p p^{\prime} x$
var $x=\varepsilon:<$ Terminus $x$
con :: $\partial p \mapsto p^{\prime} \Rightarrow p$ (Underground $\left.p p^{\prime} x\right) \rightarrow$ Underground $p p^{\prime} x$
con $p s x=$ case traverse compressed psx of
Just pt0 $\rightarrow$ Ground (Con pt0)
Nothing $\rightarrow$ case crush tubing (down $p s x$ ) of
Just $s x \rightarrow s x$
Nothing $\rightarrow \varepsilon$ :< Junction $p s x$
where
compressed $:: \partial p \mapsto p^{\prime} \Rightarrow$ Underground $p p^{\prime} x \rightarrow$ Maybe (Term $p \emptyset$ )
compressed $($ Ground pt0) $=$ Just pt0
compressed _ $\quad=$ Nothing
tubing ( $p^{\prime}$ sx, bone $:<$ node $)=$ case traverse compressed $p^{\prime} s x$ of
Just $p^{\prime} t 0 \rightarrow$ Just (step $p^{\prime} t 0 \oplus$ bone : < node)
Nothing $\rightarrow$ Nothing
tubing $-=$ Nothing

```
underground :: \(\partial p \mapsto p^{\prime} \Rightarrow\) Underground \(p p^{\prime} x \rightarrow(x \rightarrow t) \rightarrow\left(p\right.\) (Underground \(\left.\left.p p^{\prime} x\right) \rightarrow t\right) \rightarrow t\)
underground (Ground (Con pt0)) \(\quad v c=c(\) fmap Ground \(p t 0)\)
underground (Tube []:-<Terminus \(x\)) \(v c=v x\)
underground (Tube []:-<Junction psx) \(\quad v c=c p s x\)
underground (Tube (\(p^{\prime} t 0:\) tube) :-<station) \(v c=\)
 \(c\left(\right.\) fmap Ground \(p^{\prime} t 0<(\) Tube tube :-<station) \()\)
```

tunnel $:: \partial p \mapsto p^{\prime} \Rightarrow$ Term $p x \rightarrow$ Underground $p p^{\prime} x$
tunnel (Var $x)=\operatorname{var} x$
tunnel $($ Con ptx $)=\operatorname{con}(f m a p$ tunnel ptx)
untunnel $:: \partial p \mapsto p^{\prime} \Rightarrow$ Underground $p p^{\prime} x \rightarrow$ Term $p x$
untunnel $s x=$ underground $s x$
$(\lambda\{-$ var -$\} x \quad \rightarrow \operatorname{Var} x)$
$(\lambda\{-\operatorname{con}-\} p s x \rightarrow$ Con (fmap untunnel $p s x))$
$(-):: \partial p \mapsto p^{\prime} \Rightarrow$ Tube $p p^{\prime} \emptyset \rightarrow$ Underground $p p^{\prime} x \rightarrow$ Underground $p p^{\prime} x$
tube $<$ Ground pt0 $=$ Ground $($ tube $\ll p t 0)$
tube $_{0} \prec$ tube $_{1}:<$ node $=$ tube $_{0} \oplus$ tube $_{1}:<$ node
instance $\partial p \mapsto p^{\prime} \Rightarrow$ Monad (Underground $p p^{\prime}$ ) where
return $=$ var
Ground $p t 0 \quad \gg \sigma=$ Ground $p t 0$

(tube : <Terminus $x$ ) > $>\sigma=$ tube $\prec \sigma x$

## References

Hinze, Ralf, Jeuring, Johan, \& Löh, Andres. (2004). Type-indexed data types. Science of computer programmming, 51, 117-151.
Huet, Gérard. (1997). The Zipper. Journal of Functional Programming, 7(5), 549-554.
McBride, Conor. (2001). The Derivative of a Regular Type is its Type of One-Hole Contexts. Available at http://www.cs.nott.ac.uk/~ctm/diff.pdf.
McBride, Conor, \& Paterson, Ross. (2006). Applicative programming with effects. Journal of Functional Programming. to appear.


[^0]:    ${ }^{1}$ Hutton's Razor strikes again!

