
Under consideration for publication in J. Functional Programming 1

FUNCTIONAL PEARL

Why walk when you can take the tube?

LUCAS DIXON
University of Edinburgh

PETER HANCOCK and CONOR MCBRIDE
University of Nottingham

Abstract

Mornington Crescent

1 Introduction

The purpose of this paper is not only self-citation (McBride, 2001; McBride &
Paterson, 2006), but also to write a nice wee program.

2 Polynomial Traversable Functors

newtype C c x = C c

instance Traversable (C c) where

traverse f (C c) = pure (C c)

newtype X x = X x

instance Traversable X where

traverse f (X x) = pure X ~ f x

data (p ¢ q) x = InL (p x) | InR (q x)

instance (Traversable p,Traversable q) ⇒ Traversable (p ¢ q) where

traverse f (InL xp) = pure InL ~ traverse f xp
traverse f (InR xq) = pure InR ~ traverse f xq

data (p £ q) x = p x £ q x

instance (Traversable p,Traversable q) ⇒ Traversable (p £ q) where

traverse f (xp £ xq) = pure (£) ~ traverse f xp ~ traverse f xq

newtype (p � q) x = Comp (p (q x))

instance (Traversable p,Traversable q) ⇒ Traversable (p � q) where

traverse f (Comp xqp) = pure Comp ~ traverse (traverse f) xqp

2 Lucas Dixon, Peter Hancock and Conor McBride

3 Free Monads

The free monad construction lifts any functorial signature p of operations to a
syntax of expressions constructed from those operations and from free variables x .

data Term p x = Con (p (Term p x)) | Var x

The return of the Monad embeds free variables into the syntax. The >>= is exactly
the simultaneous substitution operator. Below, f takes variables in x to expressions
in Term p y ; (>>=f) delivers the corresponding action on expressions in Term p x .

instance Functor p ⇒ Monad (Term p) where

return = Var

Var x >>= f = f x
Con tp >>= f = Con (fmap (>>=f) tp)

Correspondingly, Term p is also Applicative and a Functor. Moreover, if p is Traversable,
then so is Term p.

instance Traversable p ⇒ Traversable (Term p) where

traverse f (Var x) = pure Var ~ f x
traverse f (Con tp) = pure Con ~ traverse (traverse f) tp

By way of example, we choose a simple signature with constant integer values and
a binary operator1. As one might expect, · ¢ · delivers choice and · £ · delivers
pairing. Meanwhile X marks the spot for each subexpression.

type Sig = C Int ¢ X £ X

Now we can implement the constructors we first thought of, just by plugging Con

together with the constructors of the polynommial functors in Sig.

val :: Int → Term Sig x
val i = Con (InL (C i))

add :: Term Sig x → Term Sig x → Term Sig x
add x y = Con (InR (X x £ X y))

4 The ∅ Type

We can recover the idea of a closed term by introducing the ∅ type, beloved of
logicians but sadly too often spurned by programmers.

data ∅
Bona fide elements of ∅ are hard to come by, so we may safely offer to exchange them
for anything you might care to want: as you will be paying with bogus currency,
you cannot object to our shoddy merchandise.

1 Hutton’s Razor strikes again!

Functional pearl 3

naughtE :: ∅ → a
naughtE = ⊥

More crucially, naughtE lifts functorially. The type f ∅ represents the ‘base cases’ of
f which exist uniformly regardless of f ’s argument. For example, [] :: [∅], Nothing ::
Maybe ∅ and C 3 :: Sig ∅. We can map these terms into any f a, just by turning all
the elements of ∅ we encounter into elements of a.

inflate :: Functor f ⇒ f ∅ → f a
inflate = unsafeCoerce # -- fmap naughtE – could be unsafeCoerce

Thus equipped, we may take Term p ∅ to give us the closed terms over signature p.
Modulo the usual fuss about bottoms, Term p ∅ is just the usual recursive datatype
given by taking the fixpoint of p. The general purpose ‘evaluator’ for closed terms
is just the usual notion of catamorphism.

cata :: (Functor p) ⇒ (p v → v) → Term p ∅ → v
cata operate (Var nonsense) = naughtE nonsense
cata operate (Con expression) = operate (fmap (cata operate) expression)

Following our running example, we may take

sigOps :: Sig Int → Int

sigOps (InL (C i)) = i
sigOps (InR (X x £ X y)) = x + y

and now

cata sigOps (add (val 2) (val 2)) = 4

We shall also make considerable use of ∅ in a moment, when we start making holes
in polynomials.

5 Differentiating Polynomials

class (Traversable p, Traversable p′) ⇒ ∂p 7→ p′ | p → p′ where

(<·) :: p′ x → x → p x
down :: p x → p (p′ x , x)

downright fmap snd (down xf) = xf
downhome fmap (uncurry (<·)) (down xf) = fmap (const xf) xf

instance ∂(C c) 7→ C ∅ where

C z <· = naughtE z
down (C c) = C c

instance ∂X 7→ C () where

C () <· x = X x
down (X x) = X (C (), x)

4 Lucas Dixon, Peter Hancock and Conor McBride

instance (∂p 7→ p′, ∂q 7→ q ′) ⇒ ∂(p ¢ q) 7→ p′ ¢ q ′ where

InL p′<· x = InL (p′<· x)
InR q ′<· x = InR (q ′<· x)
down (InL p) = InL (fmap (InL× id) (down p))
down (InR q) = InR (fmap (InR× id) (down q))

instance (∂p 7→ p′, ∂q 7→ q ′) ⇒ ∂(p £ q) 7→ p′ £ q ¢ p £ q ′ where

InL (p′ £ q)<· x = (p′<· x) £ q
InR (p £ q ′) <· x = p £ (q ′<· x)
down (p £ q) =

fmap ((InL · (£q))× id) (down p) £ fmap ((InR · (p£))× id) (down q)

instance (∂p 7→ p′, ∂q 7→ q ′) ⇒ ∂(p � q) 7→ (p′ � q) £ q ′ where

(Comp p′ £ q ′) <· x = Comp (p′<· q ′<· x)
down (Comp xqp) = Comp (fmap outer (down xqp)) where

outer (p′, xq) = fmap inner (down xq) where

inner (q ′, x) = (Comp p′ £ q ′, x)

6 Differentiating Free Monads

A one-hole context in the syntax of Terms generated by the free monad construc-
tion is just a sequence of one-hole contexts for subterms in terms, as given by
differentiating the signature functor.

newtype ∂p 7→ p′ ⇒ Tube p p′ x = Tube [p′ (Term p x)]

Tubes are Traversable Functors. They also inherit a Monoid structure from their un-
derlying representation of sequences. Exactly which sequence structure you should
use depends on the operations you need to support. As in (McBride, 2001), we are
just using good old [] for pedagogical simplicity. At the time, Ralf Hinze, Johan
Jeuring and Andres Löh pointed out (2004), this choice does not yield constant-
time navigation operations in the style of Huet’s ‘zippers’ (1997), and I am sure
they would not forgive us this time if we failed to mention that replacing [] by
‘snoc-lists’ which grow on the right restores this facility.

Let us give an interface to contexts. We shall need the Monoid structure:

instance Monoid (Tube p p′ x) where

ε = Tube []
ctxt ⊕ Tube [] = ctxt
Tube ds ⊕ Tube ds ′ = Tube (ds ++ ds ′)

We may construct a one-step context for Term p from a one-hole context for sub-
terms in a p.

step :: ∂p 7→ p′ ⇒ p′ (Term p x) → Tube p p′ x
step d = Tube [d]

Plugging a Term into a Tube just iterates <· for p.

Functional pearl 5

(<<·) :: ∂p 7→ p′ ⇒ Tube p p′ x → Term p x → Term p x
Tube [] <<· t = t
Tube (d : ds)<<· t = Con (d <·Tube ds <<· t)

Moreover, anyplace you can plug a subterm is certainly a place you can plug a
variable, and vice versa. We shall also have

instance ∂p 7→ p′ ⇒ ∂(Term p) 7→ Tube p p′ where

ctxt <· x = ctxt <<·Var x
down (Var x) = Var (ε, x)
down (Con tp) = Con (fmap outer (down tp)) where

outer (p′, t) = fmap inner (down t) where

inner (ctxt , x) = (step p′ ⊕ ctxt , x)

7 Going Underground

data ∂p 7→ p′ ⇒ Underground p p′ x
= Ground (Term p ∅)
| Tube p p′ ∅ :−<:Node p p′ x

data ∂p 7→ p′ ⇒ Node p p′ x
= Terminus x
| Junction (p (Underground p p′ x))

var :: ∂p 7→ p′ ⇒ x → Underground p p′ x
var x = ε :−<:Terminus x

con :: ∂p 7→ p′ ⇒ p (Underground p p′ x) → Underground p p′ x
con psx = case traverse compressed psx of

Just pt0 → Ground (Con pt0)
Nothing → case crush tubing (down psx) of

Just sx → sx
Nothing → ε :−<: Junction psx

where

compressed :: ∂p 7→ p′ ⇒ Underground p p′ x → Maybe (Term p ∅)
compressed (Ground pt0) = Just pt0
compressed = Nothing

tubing (p′sx , bone :−<:node) = case traverse compressed p′sx of

Just p′t0 → Just (step p′t0 ⊕ bone :−<:node)
Nothing → Nothing

tubing = Nothing

6 Lucas Dixon, Peter Hancock and Conor McBride

underground :: ∂p 7→ p′ ⇒ Underground p p′ x → (x → t) → (p (Underground p p′ x) → t) → t
underground (Ground (Con pt0)) v c = c (fmap Ground pt0)
underground (Tube [] :−<: Terminus x) v c = v x
underground (Tube [] :−<: Junction psx) v c = c psx
underground (Tube (p′t0 : tube) :−<: station) v c =

c (fmap Ground p′t0 <·(Tube tube :−<: station))

tunnel :: ∂p 7→ p′ ⇒ Term p x → Underground p p′ x
tunnel (Var x) = var x
tunnel (Con ptx) = con (fmap tunnel ptx)

untunnel :: ∂p 7→ p′ ⇒ Underground p p′ x → Term p x
untunnel sx = underground sx

(λ {-var -} x → Var x)
(λ {-con -} psx → Con (fmap untunnel psx))

(−<) :: ∂p 7→ p′ ⇒ Tube p p′ ∅ → Underground p p′ x → Underground p p′ x
tube −<Ground pt0 = Ground (tube <<· pt0)
tube0−< tube1 :−<:node = tube0 ⊕ tube1 :−<:node

instance ∂p 7→ p′ ⇒ Monad (Underground p p′) where

return = var

Ground pt0 >>= σ = Ground pt0
(tube :−<: Junction psx) >>= σ = tube −< con (fmap (>>=σ) psx)
(tube :−<: Terminus x) >>= σ = tube −<σ x

References

Hinze, Ralf, Jeuring, Johan, & Löh, Andres. (2004). Type-indexed data types. Science of
computer programmming, 51, 117–151.

Huet, Gérard. (1997). The Zipper. Journal of Functional Programming, 7(5), 549–554.

McBride, Conor. (2001). The Derivative of a Regular Type is its Type of One-Hole Con-
texts. Available at http://www.cs.nott.ac.uk/∼ctm/diff.pdf.

McBride, Conor, & Paterson, Ross. (2006). Applicative programming with effects. Journal
of Functional Programming. to appear.

