Under consideration for publication in J. Functional Programming 1

FUNCTIONAL PEARL
Why walk when you can take the tube?

LUCAS DIXON
University of Edinburgh

PETER HANCOCK and CONOR MCBRIDE
University of Nottingham

Abstract

Mornington Crescent

1 Introduction

The purpose of this paper is not only self-citation (McBride, 2001; McBride &
Paterson, 2006), but also to write a nice wee program.

2 Polynomial Traversable Functors

newtype Ccz =Cc

instance Traversable (C ¢) where
traverse f (C ¢) = pure (C ¢)

newtype Xz =X ¢

instance Traversable X where
traverse f (X z) = pure X® f «

data (p B ¢) x =InL (p z) | InR (¢q)
instance (Traversable p, Traversable ¢) = Traversable (p B ¢) where

traverse f (InL zp) = pure InL & traverse f xp
traverse f (InR zq) = pure InR ® traverse f zq

data (pXRg)z=p2Ngqgz
instance (Traversable p, Traversable ¢q) = Traversable (p X ¢) where
traverse f (zp X zq) = pure (X)) ® traverse f zp ® traverse f zq

newtype (p [¢) = Comp (p (¢ z))
instance (Traversable p, Traversable ¢) = Traversable (p @ ¢) where
traverse f (Comp xgp) = pure Comp ® traverse (traverse f) zqp

2 Lucas Dizon, Peter Hancock and Conor McBride

3 Free Monads

The free monad construction lifts any functorial signature p of operations to a
syntazx of expressions constructed from those operations and from free variables z.

data Term p x = Con (p (Term p z)) | Var z

The return of the Monad embeds free variables into the syntax. The >= is exactly
the simultaneous substitution operator. Below, f takes variables in z to expressions
in Term p y; (>>=f) delivers the corresponding action on expressions in Term p z.

instance Functor p = Monad (Term p) where
return = Var
Varz >=f=fuz
Con tp >= f = Con (fmap (>=f) tp)

Correspondingly, Term p is also Applicative and a Functor. Moreover, if p is Traversable,
then so is Term p.

instance Traversable p = Traversable (Term p) where
traverse f (Var z) =pureVar® f z
traverse f (Con tp) = pure Con ® traverse (traverse f) tp

By way of example, we choose a simple signature with constant integer values and
a binary operator!. As one might expect, - B - delivers choice and - X - delivers
pairing. Meanwhile X marks the spot for each subexpression.

type Sig = ClInt H XX X

Now we can implement the constructors we first thought of, just by plugging Con
together with the constructors of the polynommial functors in Sig.

val :: Int — Term Sig x

val 7 = Con (InL (C 7))

add :: Term Sig x — Term Sig z — Term Sig z
add z y = Con (INR (X 2 K X y))

4 The () Type

We can recover the idea of a closed term by introducing the () type, beloved of
logicians but sadly too often spurned by programmers.

data ()

Bona fide elements of () are hard to come by, so we may safely offer to exchange them
for anything you might care to want: as you will be paying with bogus currency,
you cannot object to our shoddy merchandise.

! Hutton’s Razor strikes again!

Functional pearl 3

naughtE::) — a
naughtE _ = 1

More crucially, naughtE lifts functorially. The type f () represents the ‘base cases’ of
f which exist uniformly regardless of f’s argument. For example, []:: [(], Nothing ::
Maybe) and C 3 :: Sig). We can map these terms into any f a, just by turning all
the elements of () we encounter into elements of a.

inflate :: Functor f = f 0 — f a
inflate = unsafeCoerce # -- fmap naughtE — could be unsafeCoerce

Thus equipped, we may take Term p () to give us the closed terms over signature p.
Modulo the usual fuss about bottoms, Term p) is just the usual recursive datatype
given by taking the fixpoint of p. The general purpose ‘evaluator’ for closed terms
is just the usual notion of catamorphism.

cata :: (Functor p) = (pv —v) = Termp 0 — v
cata operate (Var nonsense) = naughtE nonsense
cata operate (Con expression) = operate (fmap (cata operate) expression)

Following our running example, we may take

sigOps :: Sig Int — Int
sigOps (InL (C 7)) =1
sigOps (INR(Xz XX y)) =z +y

and now
cata sigOps (add (val 2) (val 2)) =4

We shall also make considerable use of () in a moment, when we start making holes
in polynomials.

5 Differentiating Polynomials

class (Traversable p, Traversable p’) = dp — p’ | p — p’ where
(<)upz—z—px
down:pzx — p(p' z, 1)

downright fmap snd (down zf) = zf
downhome fmap (uncurry (<)) (down zf) = fmap (const zf) zf

instance 9(C ¢) — C () where
C z < _ = naughtE z
down (Cc¢)=Cec

instance X — C () where
C)<z=Xzx
down (X z) =X (C (), z)

4 Lucas Dizon, Peter Hancock and Conor McBride

instance (Jp — p’,0q¢— ¢') = d(p B ¢q) — p’ B ¢’ where
InLp' <z =InL (p' <)
InR ¢’ <z =1InR (¢ < z)
down (InL p) = InL (fmap (InL x id) (down p))
down (InR ¢) = InR (fmap (InR x id) (down ¢))

instance (Op — p',0q— ¢') = 0(p X q) — p' K q B pX ¢ where
InL(p Kg)<az=(p'<z)Xyq
InR(pXR¢)<z=pK (¢ <x)
down (p X q) =
fmap ((InL - (Xgq)) x id) (down p) ® fmap ((InR - (pX)) x id) (down ¢)

instance (Op — p',dq— ¢') = d(pE q) — (p' @ ¢) X ¢’ where
(Comp p' K ¢') <2 = Comp (p’ < ¢’ < x)
down (Comp zgp) = Comp (fmap outer (down zgp)) where
outer (p’, zq) = fmap inner (down zq) where
inner (¢’,z) = (Comp p’' ¥ ¢, z)

6 Differentiating Free Monads

A one-hole context in the syntax of Terms generated by the free monad construc-
tion is just a sequence of one-hole contexts for subterms in terms, as given by
differentiating the signature functor.

newtype Op — p’ = Tube p p’ x = Tube [p’ (Term p z)]

Tubes are Traversable Functors. They also inherit a Monoid structure from their un-
derlying representation of sequences. Exactly which sequence structure you should
use depends on the operations you need to support. As in (McBride, 2001), we are
just using good old [] for pedagogical simplicity. At the time, Ralf Hinze, Johan
Jeuring and Andres Loh pointed out (2004), this choice does not yield constant-
time navigation operations in the style of Huet’s ‘zippers’ (1997), and I am sure
they would not forgive us this time if we failed to mention that replacing [] by
‘snoc-lists’ which grow on the right restores this facility.
Let us give an interface to contexts. We shall need the Monoid structure:

instance Monoid (Tube p p’ z) where
€ = Tube []
ctat ® Tube [] = ctxt
Tube ds @ Tube ds’ = Tube (ds + ds’)

We may construct a one-step context for Term p from a one-hole context for sub-
terms in a p.

step:: Op — p’ = p’ (Term p) — Tube p p’ x
step d = Tube [d]

Plugging a Term into a Tube just iterates < for p.

Functional pearl)

(<):0p+—p = Tubepp' v — Termp z — Term p x
Tube [|<ct =1t
Tube (d : ds) <t = Con (d < Tube ds < t)

Moreover, anyplace you can plug a subterm is certainly a place you can plug a
variable, and vice versa. We shall also have

instance dp — p’ = 9(Term p) — Tube p p’ where
ctrt <z = ctot < Varz
down (Var z) = Var (g,2)
down (Con tp) = Con (fmap outer (down #p)) where
outer (p’, t) = fmap inner (down t) where
inner (ctxt,z) = (step p’ @ ctat,)

7 Going Underground

data O0p — p’ = Underground p p’ z

= Ground (Term p 0)

| Tubep p’ @ :—~Nodep p' z
datadp — p' = Node p p’ z

= Terminus z

| Junction (p (Underground p p’))

var:: Op — p’ = z — Underground p p’ z
var x = ¢ —<Terminus ¢

con :: dp — p’ = p (Underground p p’) — Underground p p’ =
con psz = case traverse compressed psx of
Just pt0 — Ground (Con pt0)
Nothing — case crush tubing (down psz) of
Just sx — sz
Nothing — € :—Junction psz
where
compressed :: Op — p’ = Underground p p’ x — Maybe (Term p ()
compressed (Ground pt0) = Just pt0
compressed _ = Nothing
tubing (p'sz, bone —<node) = case traverse compressed p'sz of
Just p't0 — Just (step p't0 @ bone —<node)
Nothing — Nothing
tubing _ = Nothing

6 Lucas Dizon, Peter Hancock and Conor McBride

underground :: 9p — p’ = Underground p p’ z — (z — ¢) — (p (Underground p p’ z) — t) — ¢t

underground (Ground (Con pt0)) v ¢ = ¢ (fmap Ground pt0)
underground (Tube [] —Terminus z) ve=vrx
underground (Tube [] —<Junction psz) v e=cps

underground (Tube (p’t0 : tube) —station) v ¢ =
¢ (fmap Ground p't0 <(Tube tube —<station))

tunnel :: Op — p’ = Term p x — Underground p p’ z
tunnel (Varz) =varz
tunnel (Con ptz) = con (fmap tunnel ptx)

untunnel :: Op — p’ = Underground p p’ z — Term p z
untunnel st = underground sz

(A {~var-} =z — Varz)

(A {-con -} psz — Con (fmap untunnel psz))

(—<)::0p + p’ = Tube p p’ 0 — Underground p p’ x — Underground p p’ z
tube —< Ground pt0 = Ground (tube < pt0)
tubeg —< tubey —<node = tubey @ tube; —<node

instance dp — p’ = Monad (Underground p p’) where
return = var
Ground pt0 >= o = Ground pt0
(tube —Junction psz) >= o = tube —< con (fmap (>=0) psz)
(tube —<Terminus) >=o0 = tube <oz

References

Hinze, Ralf, Jeuring, Johan, & L&h, Andres. (2004). Type-indexed data types. Science of
computer programmming, 51, 117-151.

Huet, Gérard. (1997). The Zipper. Journal of Functional Programming, 7(5), 549-554.

McBride, Conor. (2001). The Derivative of a Regular Type is its Type of One-Hole Con-
texts. Available at http://www.cs.nott.ac.uk/~ctm/diff.pdf.

McBride, Conor, & Paterson, Ross. (2006). Applicative programming with effects. Journal
of Functional Programming. to appear.

