Fundamenta Informaticae XX (2005) 1-29 1
10S Press

d for Data: Differentiating Data Structures

Michael Abbott Thorsten Altenkirch ©
Diamond Light Source, School of Computer Science & IT,
Rutherford Appleton Laboratory The University of Nottingham
michael@araneidae. co.uk txa@cs.nott.ac.uk

Neil Ghani Conor McBride

Department of Mathematics and Computer Science, School of Computer Science & IT,
University of Leicester. The University of Nottingham
ngl3@mcs. le.ac.uk ctm@cs.nott.ac.uk

Abstract. This paper and our conference paper (Abbott, Altenkirch, Ghani, and McBride, 2003b)
explain and analyse the notion of the derivative of a data structure as the type of its one-hole contexts
based on the central observation made by McBride (2001). To make the idea precise we need
a generic notion of a data type, which leads to the notion of a container, introduced in (Abbott,
Altenkirch, and Ghani, 2003a) and investigated extensively in (Abbott, 2003). Using containers we
can provide a notion of linear map which is the concept missing from McBride’s first analysis. We
verify the usual laws of differential calculus including the chain rule and establish laws for initial
algebras and terminal coalgebras.

1. Introduction

This paper, based on our conference paper (Abbott et al., 2003b) explains and analyses the notion of the
derivative of a data structure as the type of its one-hole contexts based on the central observation made
by McBride (2001).

One-hole contexts arise frequently in symbolic programming tasks such as the implementation of
a tactic library for a proof system such as COQ or LEGO. For a simple example, consider the task of
writing editing operations for binary trees (in Haskell):

data Tree = Leaf | Node Tree Tree

CCorresponding author

2 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

We often require the notion of a tree with a hole replacing of one of its subtrees. How can we represent
this in a functional language? A good answer to this question can be found in Huet’s functional pearl,
‘The Zipper’ (Huet, 1997).

Using a top-down approach for ease of presentation', we arrive at the following Haskell program:

data Tree’ = Left Tree | Right Tree
type Zipper = [Tree’]

Here Tree’ represents the choice we have to make at every step on the path through the tree together
with the rest of the tree not on our path. The Zipper is the list of these steps. This can be made precise
by providing a plug operation which fills a hole with a tree:

plug :: Zipper -> Tree -> Tree

plug [] t =t

plug ((Left 1) : z) t = Node (plug z t) 1
plug ((Right r) : z) t = Node r (plug z t)

Can we solve this problem in a generic way? What happens if we consider ternary trees or finitely
branching trees? Certainly the Zipper will remain a sequence of steps but what are these steps made
of? Writing T = uX.F X for the generic type of trees, the zipper arises as Z = List (F' T), where
ListX = uY.1+ X xY and F' is derived from F in some way. In the case of binary trees we have
FX =1+X?and F'X =2 x X. In the case of ternary trees we have to remember where we go and two
subtrees, i.e. FX = 1+ X3 leads to F' X =3 x X2,

It turns out that the resemblance with derivatives is no accident and applies to all reputable type
constructors. E.g. what is the type of one-hole contexts of F X = F1 X X F, X? A hole in F is either a
hole in F; leaving F; intact or vice versa a hole in F> with Fy intact. Writing dF for F with a hole we
arrive at the product law

OF 2 0F; x Fb+F) x dF> .

We might picture this as follows:

£ with a hole is £y or JoF

F,)2 12

In the present paper we cover all ingredients of polynomial functors, the chain rule and rules for initial
algebras and terminal coalgebra not present in calculus. An example for the initial algebra case is the
derivative of lists dListX = uZ.ListX + X x Z. A similar construction can be applied to potentially
infinite lists List™ X = v¥.1+ X x Y whose derivative is dList™ X = uZ.List™ X + X x Z. Note that the
U in the derivative does not change into a v which reflects the fact that the path to a hole is always finite.

To develop this idea we use the notion of containers, introduced in (Abbott et al., 2003a) and further
investigated in (Abbott, 2003; Abbott, Altenkirch, and Ghani, 2005). A container is a generic notion of

'Huet’s slightly more complex bottom-up approach yields more efficient operations, and is based on the same data structures

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 3

a datatype, specified by a type of shapes S and a family of positions P indexed over S; its extension is
given by
FX=%Ys:SPs—X

Containers generalize shapely types (Jay and Cockett, 1994) and are related to the work of Joyal (1986)
on species and analytical functors whose relevance for Computer Science has been recently noticed by
Hasegawa (2002). Indeed, if we ignore the fact that analytical functors allow quotients of positions, i.e.
if we consider normal functors, we get a concept which is equivalent to a container with a countable set
of shapes and finite sets of positions. Hence containers can be considered as a generalisation of normal
functors of arbitrary size.

Using containers we can provide a notion of linear map which is the concept missing from McBride’s
first analysis (McBride, 2001). The latter equips a syntax of datatype descriptions with a symbolic
differentiation operator, including the law for least fixed points: the corresponding datatypes can then
be equipped with exactly the generic plugging-in operation envisaged above. McBride was able to
implement his construction in the LEGO system (Luo and Pollack, 1992), but he did not explain
why differentiation delivers one-hole contexts by relating the concrete datatypes computed as formal
derivatives to an underlying notion of linear morphism.

We define a linear morphism between containers as a polymorphic function which does not copy
or forget data, this corresponds to a cartesian natural transformation on the associated functors, i.e. a
container morphisms which introduces an isomorphism on positions. Writing Con " (F, G) for the set of
linear maps we can specify derivatives by the following isomorphism

Con(F®I,G) = Con"(F, dG)

where ® is the cartesian product in Con, which is a mnoidal operators in Con".
We can then construct the derivative of a decidable container, i.e. one where the set of positions has
a decidable equality, explicitly as

FX = Xs:S.Ps—X
JFX = Xs:S.Ep:Ps.(Ps—p)—X

where A — a is the set A without the element a. This clearly resembles derivatives of a power series:

fx o= Y x"
dfx = Z:ozla,-x“"_l

In (Abbott et al., 2003b) we used the language of category theory to present our construction in a
point-free way, while the present paper uses the language of Martin-L6f’s constructive set theory. In a
way nothing has changed because the constructive set theory is just the internal language of the class of
categories we are interested in. However, in our experience it is easier to keep track of the dependencies
within constructions by using variables. Using the type-theoretic language we arrive at a picture where
our proofs very closely resembles the intuitive reasoning illustrated by diagrams and hence explains
better how the proofs were actually discovered.

4 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

1.1. Related work

Ehrhard and Regnier (2003) introduce the differential lambda calculus, however their motivation is quite
different from ours in that they use differentiation on programs not types. However, they use the notion
of a linear substitution to define differentiation of which our Con™ may be an instance.

Fiore, Plotkin, and Turi (1999) introduce the operator d on functor categories by the isomorphism

Fxl=-G=F —=06G

This operator and our d both capture forms of abstraction by an adjunction. However, § was intended to
capture substitution, where d models the linear notion of plugging in, and thus, unlike &, corresponds to
differentation.

Rajan (1993) defines the notion of the derivative of a combinatorial species by an adjunction, a
construction analogous to our definition in a different framework. Formally, his definition is applicable
to a different class of functors. See also (Fiore, 2004) for a recent investigation of the differential structure
of generalized species.

1.2. Plan of the paper

In section 2 we review the constructive set theory we are using and relate it to a class of categories. We
also introduce the pattern matching notation which is used throughout the paper. In section 3 we revisit
the notion of containers, based on material in (Abbott et al., 2003a) and (Abbott, 2003). In section 4
we introduce the notion of subtraction and establish a number of properties which we need later. We
also define the notion of a decidable container. In section 5 we specify the notion of a derivative using
linear maps and show how to construct the derivative of a decidable container explicitly. In section 6
we apply this construction to establish a number of laws, i.e. how to construct derivatives of constant
containers, +, X and the chain rule. In section 7 we show how to construct least and greatest fixpoints
of containers and in section 8 we introduce and verify laws for the differentiation of fixpoints. We close
with conclusions and suggestions for further work.

2. Apparatus

This paper can be read in two ways:
1. as a construction within Martin-L6f’s constructive set theory;
2. as a construction in the internal language of a class of categories.

The set theory we are using is the extensional theory MLW®*, e.g. see (Aczel, 1999), and is defined by
the following constructions:

I[T-sets: We shall use the notation (a:A) — Ba for IT-sets and the usual A-calculus syntax for abstraction
and application.

Y-sets: We write X-sets as (a:A; Ba), its elements are written (a,b), we use pattern matching notation
to implement elimination. We notationally extend this to n-ary X-sets by

(ap:Ao; ar:Ay; ... ap—1:An—1) = (ao:Ao; (a1:A1; ... ap1:A4—1)...) .

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 5

We also write 1 for a set with just one constructor ():1.

Coproducts: It is sufficient to introduce Bool: Set with true,false: Bool and 0: Set with no constructors.
Formally, binary coproducts can be reduced to Bool via

A+B= (b:Bool; if bthenAelseB) .

Using a vertical pattern matching notation, inspired by functional programming languages like
SML or Haskell, we write
A+B— true; A
| false; B

Here we use pattern matching to calculate a set, this is called a large elimination. In the sequel
we will use inl and inr as the constructors for A + B and again use pattern matching notation for
elimination. In the presence of large eliminations we can also define sets by pattern matching, e.g.

in the case of X-sets we write
inla:A; Ca
| inrb:B; Db

F(inla) = Ca
F(inrb) = Db .

for (x:A+ B; F x) where

In (Abbott et al., 2003a; Abbott, 2003; Abbott et al., 2003b) we used the point-free notation (A +
B; C ¥ D) to denote this set. In this paper we prefer the use of pattern matching notation over
point-free notation, in order to show precisely the dependencies which we exploit.

Equality sets: Given x,y:X, we have Eqxy:Set. It contains the single element refl x if and only if x =y,
and is otherwise uninhabited. As we are working in an extensional setting, we may treat x and y
as the same, if we know that Eqxy is inhabited. In this view it is easy to see that Eq is symmetric
and transitive and we can establish that constructors are one-to-one:

Eq(inla) (inld') = Eqad
Eq(inrd) (inrd') = Eqad
Eq(inla) (inrb) = 0
Eq(inrd) (inla) = 0
Eq(ao,co) (a1,c1) = (Eqapar; Eqeocr) -

W-sets: Given A:Set,B:A — Set we write W A B: Set for the inductive set generated by sup: (a:A) —
(Ba— WAB) — WAB. We can use function definition by structural recursion as an elimination
principle.

Dually we may introduce the coinductive counterpart of W which we denote by M A B allowing
guarded corecursion as elimination. However, in (Abbott et al., 2005), we show that M-sets can be
constructed using W-sets in this theory.

6 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

We do not assume the presence of a universe of small sets.
We will sometimes name subterms which correspond to places in a diagram, even if the names play
no part in the formal mathematics. Hence the reader should not be surprised to encounter terms like:

(a:A)+ (b:B) for A+B
(s:S; p:Ps) for (s:S; Ps)

Categorically, our assumptions correspond to our ambient category of sets having the following
properties:

e locally cartesian closed (LCC), this corresponds to having X-sets, 1, I[1-sets and equality sets;

e disjoint coproducts, corresponding to the presence of large eliminations for Bool (and hence all
coproducts);

e W-sets correspond to assuming that initial algebras for functors of the form F X = (a:A; Ba — X)
exist, and dually M-types correspond to terminal coalgebras for the same class of functors.

In this framework a set X is interpreted as an object of the ambient category, while a family X — Set
is interpreted as an object of the slice category over X. All the type theoretic constructions then lift to
constructions on the slice categories.

In (Abbott et al., 2005) we referred to locally cartesian closed categories with disjoint coproducts
and W-sets as Martin-Lof categories. They are slightly more general than pretopoi with W-sets
as investigated by Moerdijk and Palmgren (2000), in that we do not require (exact) colimits. The
correspondence between set-theoretic assumptions and categorical structures are investigated in more
detail in a number of places, e.g. see (Hofmann, 1994, 1997; Abbott, 2003).

We write Set for the chosen category of sets, and use = for the functor category. I.e. while Set — Set
is the type of operators on sets, Set = Set is the functor category.

Given A, B: Set we write A = B for the set of isomorphisms. Given f:A = B we implicitly project f
to A — B and use f~!:B — A for the second component of the isomorphism. We use the fact that any
pattern matching program which establishes a correspondence between a partition of its domain and a
partition of its codomain is an isomorphism. E.g. to construct f:A X (B+C) =2 (Ax B)+ (A xC) we
write

f(a,inlb) = inl(a,b)
f(a,inrc) = inr(a,c) .

Finally, in our presentation of proofs, we distinguish between the use of equations = which

~

hold definitionally and isomorphisms = which we have proven. We will often mark an equational
development with a directed [HINT) indicating the properties we exploit.

3. Containers Revisited

A container F = (s:S > Ps) is given by a set of shapes S: Set and a family of positions P:S — Set. We
illustrate such a container by drawing a triangle diagram, showing a typical shape s in the apex—the

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 7

base represents the position set P s, where we show a typical position p, as follows:
_)

p:Ps
F

The extension of a container [F] is an operator on sets, given by

[F] : Set— Set
[F1X = (s:S;Ps—X) .

An element of [F] X thus consists of a choice s : S of shape and a function f, attaching ‘payload’ from
X to the positions in P's.

As an example consider the case of lists, List = (n:Nat > Finn), where Finn = {i < n}. For any
X :Set an element (n, f) : [List] X is given by n:Nat and a function f:Finn — X giving access to the n
elements of the list. Here we regard the value n as giving the shape of the list.

In general we are interested in n+ 1-ary containers (s:S > Pys,P; s,...P, s) where P;:S — Set. To
reduce clutter, we will restrict our attention to 2-ary containers H = (s:S > Pys, Py s) which we depict as

follows: o

p()ZP()S
—1

% p1:Ps

The labels —o and —; give the correspondence between the position sets and the container’s parameters
which is trivial in the diagrams for 1-ary containers.
The extension of a 2-ary container is given by

[H] : Set— Set— Set
[H]XY = (s:S;Pps—X;Pis—Y) .
We define a number of operations on containers: given a C: Set we define the constant container
KC := (C > 0) identity container | := (1 > 1). Their extensions have the behaviour we expect
[KC]X = C
x = x.

Given C:Set and containers F = (s:S > Ps), G= (¢:T > Qt) we define

C—F (f:C—>Sp>c:C;P(f0))

inls:S > Ps
F+G = _
| inre:T > Qt

FxG = (s:81t:T>Ps+Qt)

8 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

and indeed, one may readily verify that their extensions behave correspondingly

1%

[C— F]X C—[F]X

[F+G]X = [F]X+[G]X

[FxG]X = [F]Xx[G]X .
We defer the definition of fixpoint operators until section 7.

We can use triangle diagrams to illustrate the typical forms which container operators yield. For
F + G, we have two forms, whilst for products F x G we have one form with two parts

F+G FxG
_)
_)
inl)4
14
F
F
or , -
%
q
i q
inr G
G

For the 2-ary case we introduce Py := (1 > 1,0) and P; := (1 > 0,1). We can weaken a l-ary
container F' = (s:S > Ps) to a 2-ary container T F := (s : S > Ps,0). We can compose containers: given
a 2-ary container H = (u:U > Rou,R; u) and a container G = (¢: T > Q't) we define

HIG]:= (U; f: Riu—T > Ryu+(r : Riu; Q(fn1)))

and indeed
[PXY = X
[PJXY = Y
[tF]XY = [F]X
[HIG]]x = [H]X([G]X) -
The typical form of H[G] is shown thus:
_)
1o
_)
ri— q

H[G] >

Observe that payload can typically be found either at a ‘top’ position rg: Rp u, or at some point g inside a
G attached ‘below’ ry.

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 9

It is straightforward to generalise these combinators to n-ary containers: we introduce a family of
projection operators P! for i < n (actually | = P(l)), a family of weakening operators 1/ F weakening a
n-ary container to n+ 1l-ary, all the other operations can be lifted to n-ary containers. The composition
operators H[i = G] for an (n+ 1)-ary container H and an n-ary container G can also be viewed as
a local definition or ‘let’ in a de Bruijn representation, as used by McBride (2001). In general we
have all the ingredients to construct all strictly positive operators made from +, x,— and constants.
After giving the interpretation of fixpoint operators in section 7 this extends to arbitrarily nested strictly
positive inductive and coinductive types. We will use type expressions with variables in strictly positive
positions to construct containers, leaving the obvious translation to the de Bruijn operators discussed
above implicit.

Containers form a category Con: given containers F = (s:S > Ps), G= (t:T > Qt) we define the
homset Con(F, G): Set thus:

Con(F,G):=(0:S—=T; (s:S) —> Q(os) — (Ps)) .
Identity and composition are straightforward:

idp = (As.s, As p.p)
(o', v)-(o,¥) = (As.0'(0s), Asr.y's(w(os)r)) .

This construction extends in a straightforward way to n-ary containers forming categories Con,, (where
clearly Con = Con,); substitution can then be regarded as a functor —[—]: Con, = Con = Con.

We observe that [—] extends to morphisms, mapping container morphisms to natural transforma-
tions, giving rise to a functor [—]: Con = Set = Set by

[(o,w)]X = A(s,f)-(o5,2q-f(¥sq)) -

Indeed, every natural transformation between the extension of containers is uniquely determined by a
container morphism.

Theorem 3.1. (Abbott et al., 2003a, theorem 3.4)
The extension functor [—] is full and faithful. a

As a consequence we are able to observe

Corollary 3.1. Con is bicartesian, i.e. has all finite products, coproducts and is distributive, and this
structure is preserved by [—]. O

While [—] is full on morphisms, there are functors which are not in its image. A counterexample is
FX = (X — 0) — 0: if there were a container (s:S > Ps) with extension [(s:S > Ps)] = F then we can
calculate S = F 122 1. We have that F2 = 1 and hence P ~ 0, however, F0=020— 0.

As a consequence of theorem 3.1 the extensions of two containers are naturally isomorphic iff
they are isomorphic in Con. We use the following notation to define both components of a container
isomorphism simultaneously. E.g. to show that (G+H) X F = (F x G)+ (F x H) where F = (s:S > Ps),

10 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

G=(t:Tv> Qt), H= (u:U > Ru) we first expand the definitions for both sides:

(G+H)xF = inle:T ; s:S>Q0t+Ps
| inru:U; s:S>Ru+Ps

(Fx G)+(F xH) <| i“'(Sis;tiT)st+Qt>

inr(s:S,u:U) > Ps+Ru

we define the isomorphism (o, y):(G+H) X F 2 (F x G) + (F x H) by

o (inlt,s) = inl(s,?)
. { inrp _ . { y(inl p)
inlg y (inrq)

o (inru,s) = inr(s,u)

L . y(inl p)
inlu y(inru)
Note that in this example the movement of F' from the right of G+ H to left of G and H is reflected in
the morphisms of positions shown above.

4. Decidability

Our presentation of container structures makes it easy to refer to the positions within a given element. If
(s,f):[(s:S > Ps)] X, then f p is the piece of payload at position p:Ps. In order to explain the notion
of ‘one-hole context at p’, we shall need to define the set of ‘positions other than p’.

Definition 4.1. (Complement)
For any x:X, we define the complement of x in X, written X — x, and the weakening map |-| . : (X —x) =X
as follows:

X —x:=(y:X; Eqxy —0)
|On)=y -

Where the set to which x belongs is clear, we may write —x for X — x. Moreover, we omit the weakening
map, or at least its subscript, where it serves only as an obvious coercion.

Moreover, a notion of one-hole context makes little sense unless it is equipped with linear
substitution— ‘plugging something into the hole’—which necessitates the capacity to decide if some
position p' is the hole or not. For our constructions to be realised as computer programs, we shall need
to pay particular attention to the position sets which admit equality testing.

Definition 4.2. (Decidability)
A set X is decidable if there exists

eqy :(x,y:X) = Eqxy+ (Eqxy — 0) .

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 11

Note that any such eqy must be unique: for any values x,y, both Eqxy and Eqxy — 0 have at most
one inhabitant, and they cannot be inhabited simultaneously. Hence for any decidable X with x,y: X, we
have 1 2 Eqxy+ (Eqxy — 0) for any x,y:X. In particular, this enables us to partition a decidable set
between any given element x and its complement.

We may now characterise the containers whose position sets are all decidable.

Definition 4.3. (Decidable container)
(s:S> Pys,...,PB,s) is a decidable container if for all s:S, each P;s is decidable.

Note that the shape set of a decidable container need not be decidable, only the positions for each
shape.

Proposition 4.1. (Complement Partition)
If X is decidable and x: X, then there exists A,: X = (X — x) + 1, such that A, x = inr ()

Proof:
A, is constructed as follows; its inverse is readily seen to exist:
Ayy:= case eqyxy
of inl(reflx) — inr ()
inr (p:Eq xy—0) —inl(y,p)
g

Hence given x: X the patterns x and |x’: X — x| partition a decidable X. We exploit these patterns in
our presentation of programs. For example, A, behaves as if defined

Acx:=inr ()
A, ‘x’|x =inlx

We shall be making use of another example—the combinator [z, f’] which grafts x + # onto some
function f’ defined over X — x.

Definition 4.4. (Grafting)
Given x:X with X decidable, T:X — Set, t:Tx and f: (¥ :X —x) — T x' define [t, f']: (x:X) — T x such
that

[t, f1x == 1t
[r, /] |x"x = fix.
Moreover, every f:(y:X) — Tyis equal to [fx, f-|—|,], so any function over X matches the pattern
[t:Tx, f:(:X—x)=>T¥] .

This will prove useful when we need to analyse the functional components of shapes generated by the
combinator H|G].

The following lemma is an application of grafting and shows how decidability transfers along
isomorphisms.

12 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

Lemma 4.1. If X is decidable then for every Y there is an isomorphism of isomorphisms:
(:X; (X —x2Y)) 2 (XY +1) .

Proof:
Working from left to right, given (x:X, ¥:X —x = P), construct [inr (), inl - ¥] via the grafting function
above, which has an inverse because inr () and inl (¥ x') partition Y + 1.

To reverse this construction, given ®:X =Y 41, we take x = ®~! (inr ()) and construct (x,¥:
(X —x) 2Y) where

W= case PIX|,
of inly =y

inr() impossible, because ®x = inr ()
and, inverting,

wly:= case @ !(inly)

of ||, — X
x impossible, because @~ (inr ()) = x.
As @ = [inr (), inl -], our two constructions are mutually inverse. |

4.1. Closure of decidability and compound complements

Sets with at most one inhabitant, such as 0, 1, Eqxy and Eqxy — 0 are trivially decidable, with an empty
complement.
We may establish the basic equality properties of coproducts as follows:

Proposition 4.2. (Coproduct preserves decidability)
If A and B are decidable, so is A + B.

Proof:
In each of the four possible cases, the task of deciding an equality on A + B reduces either to a problem
with a known solution, as we have:

Eq(inla) (inld') 2 Eqad
Eq (inla) (inrb) =0
Eq (inrb) (inla) =0
Eq (inrb) (inrb')

~Eqbb .

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 13

Proposition 4.3. (X preserves decidability)
If A is decidable, and C a is decidable for all a:A, then (a:A; Ca) is decidable. In particular A —a is
decidable.

Proof:
As above, an equality decision on pairs reduces to a pair of equality decisions, given that

Eq (Cl(),C()) (al,cl) = (Eq apdap, EqC()Cl) .

We shall shortly present our construction of one-hole contexts via complement sets. In the proofs
which follow, we shall need to exploit the following isomorphisms, which show us how we can simplify
complements, given some information about the element they exclude. We indicate the use of these
results by the hint [SIMPLIFY —).

Proposition 4.4. (Complement simplification)
If D is decidable, we have:

0—x =2 0
(A+B)—(inla) =2 (A—a)+B
(A+B)—(inrb) = A+ (B-D)
1-) 20
(x:D; Cx)—(d,c) = (d':(D—d);Cd")+(Cd—c)
(Eqxy)—p = 0
(Eqxy—0)—p = 0.

Proof:
Sets with at most one inhabitant have 0 as complement. This leaves the laws for coproducts and X-sets
with decidable first component. For inl:

(A+B)—(inla)
[EXPAND —)
= (x:A+B; Eqx(inla) — 0)
[DISTRIBUTE X,+)
~ (d:A; Eq(inld’) (inla) — 0) + (b:B; Eq(inrd) (inla) — 0)
[SIMPLIFY EQUATIONS)
>~ (d":A; Eqad —0)+(b:B;0—0)
[DEFINITION OF —, ALGEBRA)
~ (A—a)+B

14 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

The proof for inr is similar. For X-sets:

(x:D; Cx) —(d,c)
[EXPAND —)
= ((x:D; y:Cx); Eq(x,y) (d,c) = 0)
[SIMPLIFY EQUATION)
>~ (x;y; (Eqxd; Eqyc) — 0)
[DECIDE IF x = d)
|d":(D—d)|; y:Cd'; (Eqd'd; Eqyc) =0

| d ; v:Cd; (Eqdd; Eqyc) =0
[SIMPLIFY EQUATIONS)
N d;y;,0-0
T | diy Eqey—0
[ALGEBRA)

> (d:(D—d);Cd")+(Cd—c) .

O

Returning to our original motivation, we now know enough to establish that the relevant standard
container operators preserve decidability of containers.

Theorem 4.1. (Container decidability closure)
Decidability of containers is closed under K, I, P, +, x and —[—].

Proof:
Inspecting the position families generated by these operators, they use only set-forming operations which
preserve decidability, as we have established above. ad

5. Derivatives Universally

In analogy with the classical development of derivatives, we will first specify derivatives by a universal
property and then present an implementation for decidable containers which satisfies our specification.
In our context the notion corresponding to linear functions are cartesian morphisms which then can be
used to specify derivatives.

A cartesian morphism is a container morphism whose action on positions is a family of
isomorphisms, i.e. we define the category Con— which has the same objects as Con but with homsets
Con "’ (F, G): Set given by

Con°(F,G):=(0:S—T; (s:S) = Q(os) = (Ps))

for F = (s:S > Ps), G= (¢t:T > Qt). The identity and composition are inherited from Con.

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 15

We can now specify the derivative of a container as the linear approximations of its tangents, so that
the derivative of G is defined to be equipped with an isomorphism

Con°(F®]I,G) = Con °(F, dG)

natural in . Here F ® G is given by the cartesian product of containers, which is a monoidal operator
on Con. We do not assume that dG always exists, not all containers are differentiable. We leave it to
future work to identify the subcategory of differentiable containers for which d is natural.

Naturality in F means that given cartesian container morphisms o:Con " (H, F), B:Con(F ® |, G)
and writing O for the isomorphism above, there is an equality 6y (B - (@ ®1)) = (6¢f) - .

More concisely, we can say that the derivative of G is a cartesian container morphism s
Con°(dG ®|, G) which is a universal arrow from the functor —®|: Con™ = Con" to G.

We can explicitly calculate the derivative of a decidable container:

G.

d(s:S > Ps):=(s:S; p:Ps>Ps—p) .
For n-ary containers the specification is
Con(F®P, G) = Con °(F, d;G)
natural in " and G and the construction is given by the following:

Definition 5.1. (Derivative)
We define the operator d; on a decidable n + 1-ary containers as follows:
di(s:S> Pys, ..., P,s)
= (s:8; pi:P,s> PySy..c, Py S, Pis— piy Pip1 Sy .y Pys) .
That is, the shape of a derivative includes the choice of position for the hole; the hole is then excluded

from the derivative’s positions.
We illustrate this by a triangle diagram with a position cut out, like this:

Let us now verify that our implementation of derivatives satisfies the specification. To avoid
unnecessary clutter we only consider the case of the unary derivative — the generalisation to the n-ary
case is straightforward.

Theorem 5.1. If G is a decidable container then there is an isomorphism
Con(F®]I,G) = Con °(F, dG)

natural in F.

16 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

Proof:
LetG=(t:T> Qt), F=(s:S > Ps) and expand the left hand side

Con°(F®]I, G)
[EXPAND F,G)
= Con°((s:S>Ps)®(1> 1), (t:T> Q1))
[EXPAND ®, £ ABSORBS 1)
= Con°((s:S>Ps+1),(t:Tv> Q1))
[EXPAND Con ™)
= (0:S=T; (s:S) = (Q(os) ZPs+1))
[FACTOR OUT S)
(s:8) = (t:T; Qt = Ps+1)

1%

and the right hand side
Con°(F, dG)
[EXPAND F,G,d)
= Con°((s:Sv> Ps), (t:T; q:Qt > Qt—q))
[EXPAND Con ™™, SPLIT 7)
= (As.(Ts,758):8 = (t:T; Qt); (5:5) = (Q (1 5) — 7y s = Pys))
[FACTOR OUT §)
> (5:8) > (t:T; q:Qt; Qt —q = Ps) .
Now by appealing to lemma 4.1 the isomorphism is established.

To show that this is a natural bijection, it is instructive to chase the fate of id 3 through the bijection
above to a morphism s : Con(dG ®1, G). First specialise the expansion of the right hand type to

Con°(dG®1,G) = (t9:T; q:Qty) = (11:T; Qt1 = (Qtp—q) +1)

and then we can compute s* = Atq. (t,A,) on the right hand side of this isomorphism. Naturality then
follows by observing that the isomorphism Con " (F, dG) — Con~"(F ®1, G) is induced by composition
with 57, taking a: Con™(F, dG) to s - (a ®1). O

6. Laws of Derivatives

Let us now establish that o satisfies the laws we expect. The arguments we give here extend readily to
n-ary containers. The proofs we present all follow the same plan:

1. expand definitions of the containers, container operations and d on both sides;
2. simplify the instances of P — p which arise in each case by the rules from Proposition 4.4;

3. ensure that the shapes on each side have been analysed into cases carrying the same information,
and that for each case, the possible positions also correspond.

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 17

It is no idle coincidence that these proofs correspond closely to the executable constructions which
they precipitate. We give a step-by-step treatment even to the simpler laws, by way of introductory
example. As we develop each side, we indicate what we are expanding or how we are simplifying with
a directed [HINT). To reduce clutter, we shall often omit repeated type annotations on variables where
they are unchanged from their previous explicit usage. This may be unusual mathematical practice, but
it is a commonplace of programming. Its advantage here over the point-free style is that it keeps explicit
the structural dependencies which are crucial to this work, whilst leaving implicit only what has already
been stated. Similarly, we shall often write (A — a) as just (—a), if we have already introduced a:A.
Hence, for example, we might write

d(s:S > Ps)
[EXPAND 0d)
= (s; p:Ps> —p) .

When we have developed both sides, we shall illustrate the intuition behind the expanded forms
by drawing triangle diagrams for the possible forms of the structure being differentiated, and the
derivatives they yield. The latter diagrams indicate the shape and position information for each possible
configuration with the same identifiers which appear in the proof. One may then readily check that the
two sides correspond both to the intuition given by the diagrams and to each other.

Proposition 6.1. (Constant Rule)

d(KC) = KO.
Proof:
Constant containers have shapes but no positions for payload.
%
C
KC

Hence we should expect an empty derivative. Developing both sides:

d(KC) KO
[EXPAND K) [EXPAND K)
= Jd(c:Cp>0) = (0> 0)
[EXPAND d)

= (c;x:0p> —x)
[SIMPLIFY —)

& (¢;x:0>0)
[DISTRIBUTE X,0)
~ (0> 0)

18 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

Proposition 6.2. (Identity Rule)
Jl =K1,

Proof:
The identity container has one shape and one position. Its derivative is unique:

- -

0 e 0 <o
| yields dl

Developing both sides:

al K1
[EXPAND I) [EXPAND I)
= d(1pv1) = (10
[EXPAND d)
= (10> -0)
[SIMPLIFY —)
(1: () > 0)
(1>0)

1%

12

In the next three proofs, we take F and G to be typical 1-ary containers (s:S > Ps) and (1:T > Q1)
respectively, whilst H is a typical 2-ary container, (u:U > Rou,Ry u).

Proposition 6.3. (Sum Rule)
d(F+G) =2 JF+dG.

Proof:
F + G yields two typical forms, and the corresponding choice of derivative forms:

- - - -

. . . .
inl P or inr q yields ~ inl , or inr .
F G oF P G 1

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 19

Developing both sides:

I(F +G)

[EXPAND F,G)

= J((s:Sp> Ps)+(t:T> Q1))

[EXPAND +)

5 inls > Ps
| inrt> Qt

[EXPAND d)

)

inls; p:Ps> —p
inrt; g:Qt > —q

[DISTRIBUTE X,+)

[

inl(s,p) > p':—p
inr(t,q) > q' :—q

We arrive at the same analysis.

Proposition 6.4. (Product Rule)
d(F xG) =2 JF x G+ F x dG.

Proof:

)
)

JF +9G
[EXPAND F,G)

= Jd(s:Sp> Ps)+d(t:Tv Q1)
[EXPAND d)

= (ss p:Ps> —p)+(t q:0t > —q)
[EXPAND +)

(inI(s,p)Dp':—p)
| inr(t,q) > q':—q

Products have one typical form, but with two typical kinds of position, hence a choice of derivative

forms:

— yields

- -
J
p
pl
s N I B N
(J
q
ql
G G

20 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

Developing the left-hand side:

d(F x G)

[EXPAND F,G)
= J((s:Sp> Ps)x(t:T> Qt))

[EXPAND X)
= Jd(s;t > Ps+Qt)

[EXPAND d)
B s; t; inlp:Ps > (Ps+Qt)—inlp
B (| st inrg:Qt> (Ps+Qt)—inrg)

[SIMPLIFY —)
s; ¢ inlp> p':(Ps—p)+ 0t

(| s inrg> Ps+4':(Qt—q))

R

Developing the right-hand side:

JF x G+F xdG
[EXPAND F,G)
= J(s:Sp> Ps)x(t:T> Q1)+ (s:S> Ps)xd(t:Tv Qt)
[EXPAND d)
= (s;p:Ps> —p)x(t>Qt)+ (s> Ps)x(t;q:Qt > —q)
[EXPAND X)
= (spito(=p)+00)+(sstiq> Ps+(—q))
[EXPAND +)
_ inl (s, p,1) > (—p) + Q1
(| inr(s,t,q) > Ps+(—q))
[FACTORIZE)
s; t; inlp o p':(Ps—p)+ Ot
< | 551 inrge Ps+4q':(Qtr—q))

1%

as required.

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 21

We choose to treat the ‘local definition’ instance of the Chain Rule in detail, as it introduces the basic
step which we iterate when differentiating fixed points.

Proposition 6.5. (Chain Rule—local definition)
d(H[G]) =2 dH|G] + d,H[G] x 9G.

Proof:
H[G] containers capture this general form

_)
o

_)
rw— q

H[G] 5

with two typical positions for payload—either at the top level, corresponding to the first parameter of H,
or within a G container located at a position corresponding to the second parameter of H. We shall see
this analysis emerge as we develop the left-hand-side:

d(H[G))
[EXPAND H,G)
= Jd((u:U > Rou,Ryu)[t:T > Qt])
[EXPAND —[—])
= 8(u' h:Riu—T > Rou+(r:Ryu; Q(hr)))
[EXPAND 0)
u; by inlrg:Rou > (Rou+(r; Q(hr)))—inlrg)
u; hy inr(ri:Ryu,q:Q (hry)) > (Rou+ (r; Q(hr))) —inr(ry,q)
DISTRIBUTE h INSIDE + IN ORDER TO.)
u; inl(h,rg) > (Rou+(r; Q(hr)))—mlro >

1%

(| u; inr (r,h,q) > (Rou+ (r; Q(hr))) —inr(ry,q)
.SPLIT h AT r; ON SECOND LINE)
u; inl (h,ro)
> (Rou+(r; Q(hr)))—inlry
(w, inr (ry,[t:T, W :(—r)) > T],q:Qt)
Rou—i—(Q([t,n']r))) —inr(r1,q)

[SIMPLIFY —
~ u; inl (h, ro) > (rg:—ro) +(ri:Riu; g:Q(hry)))
|umwmvh]><mﬂwﬂ4¢—mq@w%»+W>m

The effect of the above is that, depending on which parameter of H accounts for the hole’s position,
the remaining positions can avoid it in a variety of ways, as shown below:

22 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

hole on top hole below
_)
1o

— —
. rh - q
rl
0 N G —
rie q O H[G ori -
i~ [| gL,

If the hole is on top (ry in the first case), a different position can be either a different r{, on top or any
q below any ry. In the second case, the hole is at g below r;, and may be avoided in three ways—choose
rp on top, choose any ¢ below a different r/, or choose a different ¢’ under r;. This is the analysis which
the right-hand side makes explicit:

AH|[G]+ d1H[G] x G
[EXPAND H,G)
do(u:U > Rou,Ryu)[t:T > Q1]
+ (u:Uv> Rou,Ryu)[t:Tv> Qt] xd(t:T > Qt)
[EXPAND dj,d;,d)
(u; r0:Rou > —ro, Ry u)[t > Q1]
+ (wri:Ryu> Rou,—r)[t > Qt] X (t; ¢: Q1 > —q)
[EXPAND —[—])
(u; ro; h:Ryu—T > (—ro)+ (r1:Ryu; Q(hry)))

= 4+ (uy ris W :(=r1) > T > Rou+ (ry:—r1; Q(H' 1))
x (t;q> —q)
[EXPAND X)

(u; ro; h > (—ro)+ (r1; Q(hry)))
+ (s ris Wt g o Rout (s Q(H'r)) +(—9))

[EXPAND +)
B inl (u,ro,h) > (ry:—ro)+ (r1; ¢:Q (hry))
N (| inr (u,ry, 7 t,q) & (ro:Rou) +(ri; ¢ : Q (' 1)) + (¢': —q))
The two sides, so developed, are isomorphic by application of basic algebraic laws. O

The general case is as follows:

Proposition 6.6. (Chain Rule)
If F is an n-ary container, and G is an n-vector of m-ary containers, then, for 0 < j < m, the jth derivative

of the n-fold composition (F - G) is given by
9;(F-G) = Y (9F)-Gx9;G;

0<i<n

The proof follows the same plan as above. A j-hole in an (F - é) is a j-hole in some G; sitting at
an i-hole in the F. Its context must therefore explain the contents of all the other G’s, together with the
remainder of the G; which contains the hole.

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 23

7. Fixpoints of Containers

Given a 2-ary container H = u:U > Rou,R u and ¢ is either u or v we define a container ¢ H
0H = (w: D > Posyw)
where ® = ¢X. (u:U;(Ryu) = X) is WU Ry (MU R, resp.) with
sup:(u:U) - (Riu—P) - P
and Posp : @ — Set is defined inductively by

ro:Rou ri:Ryu x:Posy (fr)
top ro:Posy (supu f) below ry x: Posy (supu f)

We are able to derive an isomorphism ing = (0, ¥) such that iny represents the constructor in the initial
algebra case and inj;' the destructor in the terminal algebra case:
ing:H[¢ H| Zcon ¢ H
by
o(u, f) >inlry . supu f > y(topry)
| o(u,f)vinr(r,x) | supuf v y(belowrx)
using that
H[oH]= (u:U;f:Ris—>w:® > Ryu+(r:Ryu;Posy (fr1)))

In Abbott et al. (2005) we show that the names uH and VH are justified, i.e. containers are closed
under constructing initial algebras and terminal coalgebras of their extension

Theorem 7.1. Given H as above we have:

1. (JuH] X, [ing] X) is the initial [H] X algebra.

2. ([vH] X, [ing'] X) is the terminal [H] X coalgebra.
The assignment is natural in X.
Note that although the theorem holds in the initial and terminal case, it is not true for any fixpoint.

All the ingredients of this construction can be derived from W-types: In (Abbott, 2003; Abbott et al.,
2005) we showed that the inductive family Posy; is definable using W-types and in (Abbott et al., 2005)
we show that M-types are derivable from W-types. In particular we do not assume the presence of a

universe.
To calculate the derivative of fixpoints, we will need a lemma to characterise complements of Posy:

Lemma 7.1.
Posy (supu f) —topro = (Rou—r)+ (r1:Ryu; Posy (fr1))
Posy(supu f) —belowr;x = (Rou)+ (r|:Ryu—ry; Posg(fr}))
+(Posg (fr1) —x)
Proof:

By expanding the fixpoint and then applying prop 4.4. ad

24 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

8. Derivatives of Fixpoints

Let ¢ be either it or v. Let us now differentiate the fixpoint container ¢ H where H = (u:U > Rou,R; u).
As above, let ® be WU R or MU Ry, corresponding to the choice of ¢, and recall that

OH = (w:® > Posy w)

Proposition 8.1. (Fixpoint rule)
d(¢H) = uH' where

H'= (1 dH[¢H]) + (1 01 H[H]) x Py

In effect, an X’s context is a finite sequence of steps recording the context of a sub-¢H inside a ¢H,
leading us to the node where the X was, and terminated by its context within that node. A typical element
thus resembles the following:

in* i;r ®— - in-inr ®— in-inl]
\H[¢H] O\ H[¢H] QoH[¢H]

We can sketch the argument by expanding fixpoints and applying the chain rule.

d(¢H) =J(H[9pH])= JdH[9H]+dH[pH]x J(¢H)

~ ~

doH[9H]+ 01H[pH]x uH'

1

pH'

There is an obvious candidate for a recursive isomorphism between the two, but does it make sense?
We should be optimistic: the shapes in d(¢H) include positions from ¢ H which are inductively defined
regardless of whether ¢ is u or v, whilst wH' is clearly inductive. We now make this intuition precise.

Proof:
Following our usual procedure, we develop the left-hand side by expanding definitions and simplifying
complements:

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 25

2(9H)
[EXPAND ¢)
= J(w:® > Posyw)
[EXPAND d)
= w:®; x:Posgw > —x
[MATCH x)
supuh; topro:Rou > Posy (supuh) — (topry)
| supuh; belowr;x > Posy (supuh)— (below r;x)
[ON SECOND LINE, SPLIT & AT ry)
supuh ; toprg > Posy (supuh) — (top ro)
= | supulw, h':(—r1) = ®]; belowr; x>
Posy (supu|[w, h']) — (below ry x)
[SIMPLIFY —)
supuh ; toprg > (ry:—ro)+(ri:Riu; y:Posy (hry))
= | supulw, h]; belowr; x> (ro:Rou)+
((Fy:=r1; z:Posy (W' r})) + («' :Posy w — x))

Remark—in the step where we split £ at r|, we did not first apply algebraic laws, permuting the
patterns to move r; left of /; we could clearly have done so, at the cost of some obfuscation.

As one might expect, the hole is either at the top node or below it, whilst the positions explain the
ways to avoid the hole. We illustrate the possibilities below, showing the components of the position
information as named above.

hole on top hole below r

Observe that if the hole is on top (rp), another position must either be elsewhere on top (r(')) or
anywhere (y) in any subtree (r1). If the hole is below (r,), another position must be either on top (rg), or
anywhere (z) in a different subtree (r}), or in the same subtree as the hole but elsewhere (x').

We arrive at the same analysis when we expand uH'.

26 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

pH'

[EXPAND H')
— u((t BHIPH]) + (t) HI9H]) x Py)

[EXPAND H, §)

(1 do(u > Ry u,Ryu)[w > Posy w])
+ (1 (u> Ryu,Ryu)[w > Posyw]) x Py)
[EXPAND dj,d;)
(T (w5 ro:Rou > —ro,Ryu)[w > Posy w])

+ (1 (u; ri:Ryu> Ryu,—ry)[w > Posgw]) X Py
[EXPAND —[—],1,Py)
u; ro; h:Ryu— @ > (—ro)+ (r:Ryu; Posy (hr)),0
= u N (w, ri; W i(=r1) > @ > Rou+ (' :—ry; Posy (K 1')),0)

x 10,1
[EXPAND X)

B u; ro; h > (—ro) + (r; Posy (hr)),0

- H (+ w;ri; B> Rou+ (r':—ry;Posy (W' 1)), 1)
[EXPAND +)

B inl (u,ro,h) > (—ro)+ (r; Posy (hr)) ,0

“(| inr (u, 1, /) > Rout (7 :—ri; Posy (1 7)), 1)

[EXPAND p)

= WiWU'R| > Posguyro gy gty W

where

U’ contains the shape u of one node,
the hole ry or a step r| towards it,
the shapes h or /' of the subtrees where the hole is not
(u:U; ro:Rou; h:Ryu—) hole ry on top

+ (w:U;ri:Riu; W':(—=r)) = ®) hole below r

U' =

R}, explains how to diverge from the hole’s path at the top node

if hole on top go elsewhere on top, or below
Ry (inl (u,ro,h)) = (ry:—ro) + (r1; y:Posy (hry))
if hole below go on top, or below to a different subtree

Ry (inr (u,ri, 1)) = (ro:Rou)+ (ri:—ri;z:Posy (B 1))

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 27

R! explains how to follow the hole’s path one step below the top node

if hole on top you can’t follow its path below
R (inl(u,ro,h)) = 0

if hole below you can
R (inr (u,r,n')) = 1

Where the shape of the derivative above comprised a whole shape w:® and a position within Pos z w,
we now have an inductively defined ‘shape context’ w': W U’ R representing both the path to the hole
and the shape information surrounding it. For each node on the path, the latter comprises the local shape
u and a function (h or i) giving shapes to the subtrees branching away at that point. A position is thus
a path which diverges from the path to the hole at some point—either at the top node, or following the
hole’s path into a subtree r| and diverging later.

The following container isomorphism (o,) converts between these two representations. This
recursive definition is terminating: ¢ and y~! are structurally recursive on the position of the hole,
whilst ~! and y are structurally recursive on the whole ‘shape context’. Again, we are careful to keep
names consistent with the diagram.

o (supuh,topry) = sup (inl (u, ro,h),())

. inlr{, . S top (inl r{)
{inrm,y) - "’{toponr(n,y))

o (supu[w,h'],below ry x) = sup (inr (u,ry,h")) (o (w,x))

inlro top (inl rp)
> < inr(inl(7,2) = >y top(inr(r},z))
inr (inr (yx')) below () X’

9. Conclusions

The present paper introduces and analyses a differential calculus of datatypes with clear applications in
generic programming and constructive reasoning. While our conference paper (Abbott et al., 2003b) and
the work presented in (Abbott, 2003) presented derivatives in category-theoretic terms, the present paper
gives an account using the language of constructive set theory. We employ pattern matching notation and
container diagrams to provide an intuitive account of the constructions.

Already in the conference paper we discussed extending the underlying notion of datatypes, i.e.
containers, to include quotients of positions to encompass type like the types of bags or multisets. Indeed,
multisets resemble the exponential function, and remain the same under differentiation. Including
quotients should make it possible to use the equivalent of Taylor’s theorem to analyse datatypes. Due to
reasons of time and space we do not develop this topic here but leave it to further work to present the
development of quotient containers and their use in the differential calculus of datatypes. It seems likely
that we can exploit existing work on combinatorial species, such as (Fiore, 2004).

Currently, we only use the specification of derivatives to derive the concrete implementation of
differentiation for containers. We hope to be able to prove the laws of differentiation directly from

28 M. Abbortt, T. Altenkirch, N. Ghani, C. McBride/ d for Data

the universal property, this generic approach would then also extend to quotient containers directly and
would not need the prerequisite of decidability.

An obvious asymmetry in our current presentation is that we use dependent types in the explanation
of data structures however, we do not analyse dependently typed structures. We hope to be able to extend
our work in this direction which would also provide an important stepping stone towards analysing higher
order types.

Finally, the constructions presented in this paper are ideal candidates for the development of a library
within a dependently typed programming language whose correctness can be verified by type checking.
We plan to implement the concepts presented in this paper in Epigram (McBride and McKinna, 2004;
McBride, 2005+), a proof and programming development system based on Type Theory.

References

M. Abbott. Categories of Containers. PhD thesis, University of Leicester, 2003.

M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. In Proceedings of Foundations of
Software Science and Computation Structures, 2003a.

M. Abbott, T. Altenkirch, and N. Ghani. Containers - constructing strictly positive types. To appear in
Journal of Theoretical Computer Science, 2005.

M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. Derivatives of containers. In Typed Lambda
Calculi and Applications, TLCA, 2003b.

P. Aczel. On relating type theories and set theories. Lecture Notes in Computer Science, 1657:1-20,
1999.

T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput. Sci., 309(1):1-41, 2003.

M. Fiore. Generalised species of structures: Cartesian closed and differential structure. available online,
2004.

M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc. 14™ LICS Conf., pages
193-202. IEEE, Computer Society Press, 1999.

R. Hasegawa. Two applications of analytic functors. Theoretical Comput. Sci., 272(1-2):112-175, 2002.

M. Hofmann. On the interpretation of type theory in locally cartesian closed catetories. In Computer
Science Logic, volume 933 of LNCS, 1994.

M. Hofmann. Syntax and semantics of dependent types. In A. M. Pitts and P. Dybjer, editors, Semantics
and Logics of Computation, volume 14, pages 79—-130. Cambridge University Press, Cambridge, 1997.

G. Huet. The zipper. Journal of Functional Programming, 71(5):549-554, 1997.

C. B. Jay and J. R. B. Cockett. Shapely types and shape polymorphism. In D. Sannella, editor,
Programming Languages and Systems - ESOP ’94: 5th European Symposium on Programming, U.K.,
April 1994, Proceedings, Lecture Notes in Computer Science, pages 302-316. Springer-Verlag, 1994.

M. Abbott, T. Altenkirch, N. Ghani, C. McBride/d for Data 29

A. Joyal. Foncteurs analytiques et espéces de structures. In Combinatoire énumérative, number 1234 in
LNM, pages 126 — 159. 1986.

Z. Luo and R. Pollack. LEGO Proof Development System: User’s Manual. Technical Report ECS-
LFCS-92-211, Laboratory for Foundations of Computer Science, University of Edinburgh, 1992.

C. McBride. The derivative of a regular type is its type of one-hole contexts. URL
http://www.cs.nott.ac.uk/"ctm/diff.ps.gz. Available electronically, 2001.

C. McBride. Epigram: Practical programming with dependent types. Lecture notes of the Advanced
Functional Programming Summerschool in Tartu, Estonia, to appear in LNCS, 2005+.

C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 14(1):16-111,
2004.

I. Moerdijk and E. Palmgren. Wellfounded trees in categories. Annals of Pure and Applied Logic, 104:
189-218, 2000.

D. S. Rajan. The adjoints to the derivative functor on species. J. Comb. Theory Ser. A, 62(1):93-106,
1993.

