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Abstract. This paper gives a reduction-preserving translation from Co-
quand’s dependent pattern matching [4] into a traditional type theory [11]
with universes, inductive types and relations and the axiom K [22].
This translation serves as a proof of termination for structurally recur-
sive pattern matching programs, provides an implementable compilation
technique in the style of functional programming languages, and demon-
strates the equivalence with a more easily understood type theory.
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1 Introduction

Pattern matching is a long-established notation in functional programming [3,
19], combining discrimination on constructors and selection of their arguments
safely, compactly and efficiently. Extended to dependent types by Coquand [4],
pattern matching becomes still more powerful, managing more complexity as we
move from simple inductive datatypes, like Nat defined as follows,

Nat : x = =zero : Nat | suc(n:Nat) : Nat

to work with inductive families of datatypes [6] like Fin, which is indexed over
Nat (Fin n is an n element enumeration), or Fin’s ordering relation, <, indexed
over indexed data.?

Fin (n:Nat) : % = fz, :Fin (suc n)
| fs,(i:Finn) :Fin (suc n)
(i:Finn) <, (j:Finn) : % :‘ leqzy; fzn <(sucn) J

leqsn;i;j (p ) Sn .]) :fsn { S(suc n) fsn.]

Pattern matching can make programs and proofs defined over such structures
just as simple as for their simply-typed analogues. For example, the proof of
transitivity for < works just the same for Fin as for Nat:

trans (p:i <j;q:j <k): i<k
trans leqzn;j q = quZn;k

trans (leqs p’) — leqs,,i.1 (trans p’ ¢') (legs ¢') — legs (trans p’ ¢’)

4 Here we write as subscripts arguments which are usually inferrable; informally, and
in practice, we omit them entirely.



There is no such luxury in a traditional type theory [14, 20], where a datatype
is equipped only with an elimination constant whose type expresses its induction
principle and whose operational behaviour is primitive recursion. This paper
provides a translation from dependent pattern matching in Coquand’s sense to
such a type theory—Luo’s UTT [11], extended with the Altenkirch-Streicher K
axiom ‘uniqueness of identity proofs’ [22]. Coquand observed that his rules admit
K; Hofmann and Streicher have shown that K does not follow from the usual
induction principle for the identity relation [9]. We show that (a variant of) K is
sufficient to bridge the gap: it lets us encode the constructor-based unification
which Coquand built directly into his rules.

Our translation here deploys similar techniques to those in [18], but we now
ensure both that the translated pattern matching equations hold as reductions
in the target theory and that the equations can be given a conventional oper-
ational semantics [1] directly, preserving termination and confluence. By doing
so, we justify pattern matching as a language construct, in the style of ALF [13],
without compromising the role of the elimination constant in characterising the
meaning of data.

An early approximant of our translation was added to the LEGO system [12]
and demonstrated at ‘Types 1998’. To date, McBride’s thesis [15] is the only
account of it, but there the treatment of the empty program is unsatisfying,
the computational behaviour is verified only up to conversion, and the issue of
unmatched but trusted terms in pattern matching rules is barely considered.

Our recent work describes the key equipment. The account of elimination
in [16] uses a heterogeneous equality to express unification constraints over de-
pendently typed data. Hence where Coquand’s pattern matching invokes an
external notion of unification and of structural recursion, we have built the tools
we need within type theory [17]. Now, finally, we assemble these components to
perform dependent pattern matching by elimination.

Overview The rest of the paper is organised as follows. Section 2 ex-
amines pattern matching with dependent types, and develops basic definitions,
including that of specialisation in patterns, as well as the programs which will
eventually be translatable to type theory. The key technical definition here is
that of splitting tree; novel here is the recording of explicit evidence for impos-
sible case branches. Section 3 describes the target type theory. This is extended
by function symbols with defining equations which determine reduction rules,
subject to certain conditions. The allowable such function definitions arise from
the existence of walid splitting trees. Finally, Section 4 shows how such func-
tion definitions may be eliminated in favour of closed terms in the type theory
with the same reduction behaviour; the valid splitting trees precisely correspond
to the terms built from constructor case analysis and structural recursion on
inductive families, modulo the heterogeneous equality Eq.



2 Dependent Pattern Matching

Let us first take a look at what dependent pattern matching is, and why it is
a more subtle notion than its simply typed counterpart. Inductive families gain
their precision from the way their constructors have specialised return types. For
example, the constructors of Fin can only make elements of sets whose ‘size’ is
non-zero. Consider writing some function p (i : Nat;z : Fin i) : ---. Trying to
match on z without instantiating 7 is an error. Rather, one must take account
of the fact that 7 is sure to be a suc, if p is to typecheck:

- pifz : Nat p (sucyj) fz e
- pi(fsy) : Nat p (sucyj) (fsy) — ---

Of course, there need not be any actual check at run time whether these (sucj)
patterns match—the type system guarantees that they must if the patterns for
x do. This is not merely a convenient optimisation, it is a new and necessary
phenomenon to consider. For example, we may define the property of ‘being in
the image of f’ for some fixed f : S — 7T, then equip f with an ‘inverse’:

Imf (¢:T) : x=1imf (s:5) : Imf (f 5) inv (¢:T;p:Imft) : S
inv (f s) (imf s) — s

The typing rules force us to write (f s) for ¢, but there is no way in general that
we can compute s from ¢ by inverting f. Of course, we actually get s from the
constructor pattern (imf s) for p, together with a guarantee that ¢ is (f s).

We have lost the ability to consider patterns for each argument independently.
Moreover, we have lost the distinction of patterns as the sub-language of terms
consisting only of the linear constructor forms, and with this, the interpretation
of defining equations as rewriting rules is insufficient. It is not enough just to
assign dependent types to conventional programs: specialised patterns change
what programs can be.

Let us adapt to these new circumstances, and gain from specialisation, ex-
ploiting the information it delivers ‘for free’. For example, in a fully decorated
version of the step case of the above definition of the trans function,

trans(suc n);(fsn i);(fsn 3);(fsn k) (leqsn;i;j p/) (qusn;j;k (]/) =
leqsy;isk (trans,;i;;x p' q')

it is precisely specialisation that ensures the p’ and ¢’ are not arbitrary < proofs,
but rather appropriate ones, which justify the recursive call to trans. Meanwhile,
we need not analyse the case

U |7( tI‘ans(suc n);(fs, 1);75k (leqsn;i;j p/) leqzn;k s S(suc n) k

because the two proof patterns demand incompatible specialisations of the mid-
dle value upon which they must agree. In general, specialisation is given by the
most general unifier for the type of the value being analysed and the type of the
pattern used to match it. Later, we shall be precise about how this works, but
let us first sketch how we address its consequences.



2.1 Patterns with Inaccessible Terms

The key to recovering an operational interpretation for these defining equations
is to find the distinction between those parts which require constructor matching,
and those which merely report specialisation. We shall show how to translate the
terms on the left-hand sides of definitional equations written by the programmer
into patterns which, following Brady [2], augment the usual linear constructor
forms with a representation for the arbitrary terms reported by specialisation
and presupposed to match.

Definition 1 (Patterns)

pat == [2]= = Av(z) = {z}
| ¢ pat* [cp]= c[p] AV(c p) = AV(D)
| term [t]= t AV(t) = 0

Ihs = f pat* [fpl= f[p] Av(f p) = av(p)

We say the terms marked ¢ are inaccessible to the matcher and may not bind
variables. The partial map Av(—) computes the set of accessible variables, where
AV(D) is the disjoint union, [, Av(p;), hence Av(—) is defined only for linear
patterns. The map [—] takes patterns back to terms.

We can now make sense of our inv function: its left-hand side becomes

inv (f s) (im s)

Matching for these patterns is quite normal, with inaccessible terms behaving like
‘don’t care’ patterns, although our typing rules will always ensure that there is
actually no choice! We define MATCH to be a partial operation yielding a match-
ing substitution, throwing a CONFLICT exception®, or failing to make progress
only in the case of non-canonical values in a nonempty context.

Definition 2 (Matching) Matching is given as follows:

MATCH(z, t) = [z — t]
MATCH(chalk 7, chalk i) == MATCHES(7, )
MATCH(chalk 7, cheese f) {4 CONFLICT
MATCH (u, t) = ¢

MATCHES(s, &) = ¢
MATCHES(p; P, t;t) = MATCH(p, t); MATCHES (P, )

So, although definitional equations are not admissible as rewriting rules just
as they stand, we can still equip them with an operational model which relies
only on constructor discrimination. This much, at least, remains as ever it was.

Before we move on, let us establish a little equipment for working with pat-
terns. In our discussion, we write p[z] to stand for p with an accessible x ab-
stracted. We may thus form the instantiation p[p'] if p’ is a pattern with variables

5 We take chalk and cheese to stand for an arbitrary pair of distinct constructors.



disjoint from those free in p[—], pasting p’ for the accessible occurrence of z and
[p'] for the inaccessible copies. In particular, p[c §] is a pattern, given fresh .
Meanwhile, we shall need to apply specialising substitutions to patterns:

Definition 3 (Pattern Specialisation) If o is a substitution from variables
A to terms over A" with Av(p) = AW A’ (making o idempotent), we define the
specialisation op, lifting o to patterns recursively as follows:

or = oz if t €A o(cp) = cop ot = ot
or =z if red

Observe that Av(op) = A’.

Specialisations, being computed by unification, naturally turn out to be idem-
potent. Their effect on a pattern variable is thus either to retain its accessibility
or to eliminate it entirely, replacing it with an inaccessible term. Crucially, spe-
cialisation preserves the availability of a matching semantics despite apparently
introducing nonlinearity and non-constructor forms.

2.2 Program Recognition

The problem we address in this paper is to recognize programs as total functions
in UTT+K. Naturally, we cannot hope to decide whether it is possible to con-
struct a functional value exhaustively specified by a set of arbitrary equations.
What we can do is fix a recognizable and total fragment of those programs whose
case analysis can be expressed as a splitting tree of constructor discriminations
and whose recursive calls are on structurally decreasing arguments.

The idea is to start with a candidate left-hand side whose patterns are just
variables and to grow a partition by analysing a succession of pattern variables
into constructor cases. This not only gives us an efficient compilation in the style
of Augustsson [1], it will also structure our translation, with each node mapping
to the invocation of an eliminator. Informally, for trans, we build the tree

trans p q
transleqz ¢ — leqz

trans (legs p’) ¢
trans{legsp/)legz

ifsy <k
g:fsj <k {trans (legs p’) (legs ¢') +— legs (trans p’ ¢')

The program just gives the leaves of this tree: finding the whole tree guaran-
tees that it partitions the possible input. The recursion reduces the size of one
argument (both, in fact, but one is enough), so the function is total.

However, if we take a ‘program’ just to be a set of definitional equations,
even this recognition problem is well known to be undecidable [4,15,21]. The
difficulty for the recognizer is the advantage for the programmer: specialisation
can prune the tree! Above, we can see that ¢ must be split to account for (leqsq’),



and having split ¢, we can confirm that no leqz case is possible. But consider the
signature empty (i:Fin zero) : X. We have the splitting tree:

empty ¢

i : Fin zero

¢ {EE ~/)

If we record only the leaves of the tree for which we return values, we shall
not give the recognizer much to work from! More generally, it is possible to
have arbitrarily large splitting trees with no surviving leaves—it is the need to
recover these trees from thin air that makes the recognition of equation sets
undecidable. Equations are insufficient to define dependently typed functions,
so we had better allow our programs to consist of something more. We extend
the usual notion of program to allow clauses f ¢ M z which refute a pattern
variable, requiring that splitting it leaves no children. For example, we write

empty (i:Fin zero)
empty i M

We now give the syntax for programs and splitting trees.

Definition 4 (Program, Splitting Tree)

program = f (context) : term splitting := compRule
clause™ | [context] Ths
clause := f term™ rhs z {splitting+
rhs = — term compRule := [context] lhs rhs
| hz

We say that a splitting tree solves the programming problem [A]f 7, if these are
the context and left-hand side at its root node. Every such programming problem
must satisfy AV(p) = A, ensuring that every variable is accessible.

To recognize a program with clauses {f i r | 0 < i < n}is to find a
valid splitting tree with computation rules {[A;] £ 7; r; | 0 < i < n} such that
[f p;]= ft; and to check the guardedness of the recursion. We defer the precise
notion of ‘valid’ until we have introduced the type system formally, but it will
certainly be the case that if an internal node has left-hand side f p[z], then
its children (numbering at least one) have left-hand sides f oplc 4] where c is
a constructor and o is the specialising substitution which unifies the datatype
indices of z and c .

We fix unification to be first-order with datatype constructors as the rigid
symbols [10]—we have systematically shown constructors to be injective and
disjoint, and that inductive families do not admit cyclic terms [17]. Accordingly,
we have a terminating unification procedure for two vectors of terms which will
either succeed positively (yielding a specialising substitution), succeed negatively
(establishing a constructor conflict or cyclic equation), or fail because the prob-
lem is too hard. Success is guaranteed if the indices are in constructor form.



We can thus determine if a given left-hand side may be split at a given
pattern variable—we require all the index unifications to succeed—and generate
specialised children for those which succeed positively. We now have:

n},

<
: T and

.

it is decidable whether there exists a splitting tree, with root [T : 5]
computation rules {[A;] £ §ir;i | 0 <i < n} such that [f ;] = ft;.

Lemma 5 (Decidable Coverage) Given f (7:5) : T; {fi;r; |0<i
fz

Proof The total number of constructor symbols in the subproblems of a split-
ting node strictly exceeds those in the node’s problem. We may thus generate all
candidate splitting trees whose leaves bear at most the number of constructors
in the program clauses and test if any yield the program. O

Coquand’s specification of a covering set of patterns requires the construction
of a splitting tree: if we can find a covering for a given set of equations, we may
read off one of our programs by turning the childless nodes into refutations.
As far as recursion checking is concerned, we may give a criterion a little more
generous than Coquand’s original [4].

Definition 6 (Guardedness, Structural Recursion) We define the binary
relation <, ‘is guarded by’, inductively on the syntax of terms:

. t t
. << [ = r<s s=
h=ch 6 LSS Fa< <t

We say that a program £ (z:S) : T; {ft;r; | 0 <i <n} is structurally recursive
if, for some argument position j, we have that every recursive call f § which is a
subterm of some r; satisfies s; < t;;.

It is clearly decidable whether a program is structurally recursive in this
sense. Unlike Coquand, we do permit one recursive call within the argument of
another, although this distinction is merely one of convenience. We could readily
extend this criterion to cover lexicographic descent on a number of arguments,
but this too is cosmetic. Working in a higher-order setting, we can express the
likes of Ackermann’s function, which stand beyond first-order primitive recur-
sion. Of course, the interpreter for our own language is beyond it.

3 Type Theory and Pattern Matching

We start from a predicative subsystem of Luo’s UTT [11], with rules of inference
given in Figure 1. UTT’s dependent types and inductive types and families are
the foundation for dependent pattern matching. Programs with pattern match-
ing are written over types in the base type universe xo, which we call small
types. Eliminations over types to solve unification are written in x;, and the
Logical-Framework-level universe O is used to define a convenient presentation
of equality from the traditional |, J and K. Our construction readily extends to
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Fig. 1. Luo’s UTT (functional core)

the additional hierarchy of universes of full UTT. The impredicative universe of
propositions in UTT is not relevant to explaining pattern matching through the
primitive constructs of type theory, and so we omit it.

We identify terms that are equivalent up to the renaming of bound variables,
and we write [z — s]¢ for the usual capture-free substitution of s for the free
variable z in .

UTT is presented through the Logical Framework, a meta-language with
typed arities for introducing the constants and equalities that define a type the-
ory. While the Logical Framework is essential to the foundational understanding
of UTT, it is notationally cumbersome, and we shall hide it as much as possible.
We shall not distinguish notationally between framework TT kinds and object-
level TT types, nor between the framework and object representations of types.
We justify this by observing that O represents the types in the underlying frame-
work, and that xy and x; are universes with names of specific types within O.
However, informality with respect to universes may lead to size issues if we are
not careful, and we shall explicitly mention the cases where it is important to
distinguish between the framework and object levels.

There is no proof of the standard metatheoretic properties for the theory
UTT plus K that we take as our target language. Goguen’s thesis [8] establishes
the metatheory for a sub-calculus of UTT with the Logical Framework, a single



universe and higher-order inductive types but not inductive families or the K
combinator. Walukiewicz-Chrzaszcz [23] shows that certain higher-order rewrite
rules are terminating in the Calculus of Constructions, including inductive fam-
ilies and the K combinator, but the rewrite rules do not include higher-order
inductive types, and the language is not formulated in the Logical Framework.

However, our primary interest is in justifying dependent pattern matching by
translation to a traditional presentation of type theory, and UTT plus K serves
this role very well. Furthermore, the extensions of additional universes, inductive
relations and the K combinator to the language used in Goguen’s thesis would
complicate the structure of the existing proof of strong normalization but do not
seem to represent a likely source of non-termination.

3.1 Telescope Notation

We shall be describing general constructions over dependent datatypes, so we
need some notational conveniences. We make considerable use of de Bruijn’s
telescopes [5]—dependent sequences of types—sharing the syntax of contexts.
We also use Greek capitals to stand for them. We may check telescopes (and
constrain the universe level a of the types they contain) with the following
judgment:

I" - valid I'S:a TIz:SEA tele(a)

I'FE tele(a) I'Fz:S;A tele(a)
We use vector notation ¢ to stand for sequences of terms, ¢1;. .. ;t,. We identify
the application f t1;...;t, with f ¢; ... t,. Simultaneous substitutions from a

telescope to a sequence are written [© — #], or [f] if the domain is clear. Substi-
tuting through a telescope textually yields a sequence of typings ¢t1:717;...;t,: 1),
which we may check by iterating the typing judgment. We write ¢ : © for the
sequence of typings [ﬂ@, asserting that the t’s may instantiate ©. We also let
I'+ oA assert that o is a type-correct substitution from A to I'-terms.

We write TTA. T to iterate the TI-type over a sequence of arguments, or
A—T if T does not depend on A. The corresponding abstraction is AA. . We
also let telescopes stand as the sequence of their variables, so if f : TIA. T, then
AF f A T. The empty telescope is £, the empty sequence, ¢.

3.2 Global Declarations and Definitions

A development in our type theory consists of a global context I' containing dec-
larations of datatype families and their constructors, and definitions of function
symbols. To ease our translation, we declare global identifiers g with a tele-
scope of arguments and we demand that they are applied to a suitable sequence
wherever they are used. Each function f(A) : T has a nonempty set of com-
putation rules. We extend the typing and reduction rules (now contextualised)
accordingly:

g@):Tel T;AFt:0

= ft~op e if [A)fp r
I;AbRgt: [HT ~orbe i [ATfpe e €

MATCHES(p, 1) = 0




We take the following at least to be basic requirements for defined functions.

Definition 7 (Function Criteria) To extend I' with £(A) : T with computa-
tion rules {[A;] £ p; ;i | 0 < i < n}, we require that:

- IART @ O,
the computation rules arise as the leaves of a splitting tree solving [A] f A,

the corresponding program is structurally recursive,
— if ry is v ey, then I'; A b e 0 Py

We shall check basic properties of pattern matching computation shortly, but
we first give our notion of data (and hence splitting) a firm basis.

Definition 8 (Inductive Families) Inductive families with n > 1 construc-
tors are checked for strict positivity and introduced globally as shown in figure 2.
We write D for the telescope = 2:D =Z.

I'-= @(*0) {F|D(E)Z*0 = Az @('L_L‘Z) | 7 S n};
I'; D(E):x0; {ci(Q:):Dw; |i<n}
Ep({M;:TTA;. HYPS(A;, BIG) =1 | i < n}; D)k
A } Ep M i; (¢; Ai) — M; A; RECS(A;, Ep M) | i < n};
D —x1; {mi:TTA;. uyPs(Ai, LITTLE(P)) — P @; (¢ Ai) | i < n};D): PD
[Prﬁ A } ep P Muz (CZ A,) = My Al RECS(Ai,eD P T_ﬁ) | 7 < n}

where BIG(.,-) = *1 LITTLE(P)(V,z) = P Uz

n

r;era: I'Ok A:x I''D(E
I'D(E):%0; 0 F & con() I'D(E):%0; 0
HYPS(g,H) = ¢ HYPS(a A A,
RECS(g, f) = ¢ RECS(a : A; A
I'\D

U5

):ix0;0;a: A A con(q)
Fa:A;A con(a)
H) = HYPS(A, H)
, f) = RECS(4, f)

IO @ tele(xg) [50;9HT: = (E):%0;© F A con(d)
I'ID(E):%0; O F r: IT@D A con(u)
HYPS(r : TI®. D ¥; A, H) = ®. H(U,r P); HYPS(A, H)
RECS(r : TI®. D 05 A, f) = (?\45 f ¥ (r ®)); RECS(4, f)

Fig. 2. Declaring inductive types with constructors

In Luo’s presentation [11], each inductive datatype is an inhabitant of O; it is
then given a name in the universe xo. There is a single framework-level eliminator
whose kind is much too large for a UTT type. Our presentation is implemented
on top: D really computes Luo’s name for the type; our UTT eliminators are



readily simulated by the framework-level eliminator. This definition behaves as
usual: for Nat, we obtain

Nat : xo; zero: Nat; suc(n:Nat):Nat;

Enat(Z :x1; S:Nat — %1 — %1; n:Nat) 1 xq;
[Z; S| Enat Z S zero  +— Z

[Z;8;n) Enat Z S (sucn) — S n (Enagt Z5n)

enat(P:Nat — %1; z: P zero; s:TIn:Nat. P n — P (suc n);n:Nat): P n;
[P;z;8] enat P z s zero  +— 2

[P;z;8;n] enat P 2 s (sucn) — sn (enat P 2 s n)

Given this, the Fin declaration yields the following (we suppress Egiy,):

Fin(n:Nat):xg; fz(n:Nat):Fin (suc n); fs(n:Nat; i:Fin n):Fin (suc n);
Efin -+ -5
eFin(P : MTn:Nat. Fin n — *13
z:Tn:Nat. P(gye oy (fzn); s :TIn:Natji:Fin n. Py i — P(gye ny (fsy 0);
n:Nat;i:Finn) : P, i
[P; z;8;n] €fin P 2z s (sucn) (fz,) +— zn
[P;z;85n;54] epin P 2 s (sucn) (fsp, i) — sni(egn Pz sni)

All of our eliminators will satisfy the function criteria: each has just one split,
resulting in specialised, inaccessible patterns for the indices. As the indices may
be arbitrary terms, this is not merely convenient but essential. Rewriting with the
standard equational laws which accompany the eliminators of inductive families
is necessarily confluent.

Meanwhile, empty families have eliminators which refute their input.

I'F = tele(xo)
I'; D(Z):xo; ED(B)ii1§ [Z;2] Ep Ex M ox

ep(P:D—%;D):PD; [P;Z;z)lepPEx h o
F valid

We have constructed families over elements of sets, but this does not yield
‘polymorphic’ datatypes, parametric in sets themselves. As Luo does, so we
may also parametrise a type constructor, its data constructors and eliminators
uniformly over a fixed initial telescope of UTT types, including .

3.3 Valid Splitting Trees and their Properties

In this section, we deliver the promised notion of ‘valid splitting tree’ and show
it fit for purpose. This definition is very close to Coquand’s original construction
of ‘coverings’ from ‘elementary coverings’ [4]. Our contribution is to separate the
empty splits (with explicit refutations) from the nonempty splits (with nonempty
subtrees), and to maintain our explicit construction of patterns in linear con-
structor form with inaccessible terms resulting from specialisation.



Definition 9 (Valid Splitting Tree) A valid splitting tree for f (A) : T has
root problem [A] £ A. At each node,

— either we have A’ F e : [p|T and computation rule

(AN fp—e
— or we have problem [A%; z:DU; "Alf plz| and for each constructor c(A°) : D,
unification succeeds for U and v, in which case
o cither all succeed negatively, and the node is the computation rule

[A%;2:D 0, A £ pla] M
e or at least one succeeds positively, and the node is a split of form

[A%; z:D 0;"A] f plz]
z{S

Each positive success yields a pair (A',0) where o is a most general
idempotent unifier for @ and U satisfying A’ b 0 A% 0 A* and DOM(0) W
A" = AW A*, and contributes a subtree to S with root

[As oz — c ATA] £ oplc A%

We shall certainly need to rely on the fact that matching well typed terms
yields type-correct substitutions. We must also keep our promise to use inacces-
sible terms in patterns only where there is no choice.

Definition 10 (Respectful Patterns) For a function £ (A) : T, we say that
a programming problem [A'] £ p’ has respectful patterns provided

— A H[p]: A
— if O+ d: A and MATCHES(p,d) = 0, then O+ 0A" and 0[p] & d.

Let us check that valid splitting trees maintain the invariant.

Lemma 11 (Functions have respectful patterns) If f(A) : T with compu-
tation rules {[A;] £ p; i | 0 < i < n} satisfies the function criteria, then [A;] £ p;
has respectful patterns.

Proof The root problem [A] f A : T readily satisfies these properties. We
must show that splitting preserves them. Given a typical split as above, taking
[A%; z: DU; "Alf plz] to some [A”; Af op[c A°]. Let us show the latter is respectful.
We have A%;x:D ¢;"A F [plz]] : A, hence idempotence of o yields A';z :
Dot;0"AF[opla]]: A. But ccA°: Dod = D o@, hence A'; A F[oplc A9]: A.
Now suppose MATCHES(oflc A°|,@) = ¢ for & b @ : A. For some b : A°,

-

we must have MATCHES(p[z],d) = 0;[r — cb]. By assumption, the plz]| are
respectful, so @ b (0; [z — ¢ b])(A”; z:D #; “A), hence ¢ b : D 07 = D [A® — b]i,

- -

and 0; [z — cb][plz]] = d. Rearranging, we get 0; [A° — b][plc A°] = a].



—

But 6;[A® — b]y unifies @ and ¢ and thus factors as ¢’ - 0 as ¢ is the most

-

general unifier. By idempotence of o, § and 0;[A° — by coincide on A’. But

-

¢ coincides with 6;[A¢ — b] on A’ because they match the same subterms of

=

the @, so 0;[A® — b] = ¢ - o, hence ¢[oplc A°]] = d. Moreover, we now have
Dt (p-0)A° and @ + (¢ - 0)(A%; 2 : D 0;A), but idempotence makes A’ a
subcontext of o(AS; A%), so @+ ¢(A’;0"A) as required. O

Lemma 12 (Matching Reduction Preserves Type) If © - fd : A and
f (A): T has a computation rule [A'] £ p'— e for which MATCHES(p,d) — 0,
then © - fe : A.

Proof By inversion of the typing rules, we must have [@|T = A. By respect-
fulness, we have O F A" and @ = 0[p]. By construction, A’ F e : [p]T, hence
O+ fe: [0[p|T = [a)T = A. O

Lemma 13 (Coverage) If a function f (A) : T is given by computation rules
{[A] £ §;mi - Pi| 0 <i<mn}, then for any @ 1t : A, it is not the case that for
each i, MATCHES(pj, 1) f CONFLICT.

Proof An induction on splitting trees shows that if we have root problem f o’
and MATCHES(]H,{) = 0 for well typed arguments t, matching cannot yield
CONFLICT at all the leaf patterns. Either the root is the leaf and the result is
trivial, or the root has a split at some z : Dv. In the latter case, we either have 6x
not in constructor form and matching gets stuck, or #z = cb where & (A) : D7,
hence unifying @ and ¥ must have succeeded positively yielding some o for which
we have a subtree whose root patterns, opfc A°] also match . Inductively, not
all of this subtree’s leaf patterns yield CONFLICT. O

It may seem a little odd to present coverage as ‘not CONFLICT in all cases’,
rather than guaranteed progress for closed terms. But our result also treats
the case of open terms, guaranteeing that progress can only be blocked by the
presence of non-constructor forms.

Lemma 14 (Canonicity) For global context I, if I' -t : DU, with t in normal
form, then t is cb for some b.

Proof Select a minimal counterexample. This is necessarily a ‘stuck function’,
f @. By the above reasoning, we must have some internal node in f’s splitting
tree [A%; z:D ;A £ plz] with 0[p[z]] = @ but I' F 6z : D 67 a non-constructor
form. But fz is a proper subterm of f @, hence a smaller counterexample. O

Lemma 15 (Confluence) If every function defined in I' satisfies the function
criteria, then ~»p is confluent.

Proof Function symbols and constructor symbols are disjoint. By construc-
tion, splitting trees yield left-hand sides which match disjoint sets of terms.
Hence there are no critical pairs. U



4 Translating Pattern Matching

In this section, we shall give a complete translation from functions satisfying the
function criteria and inhabiting small types to terms in a suitable extension of
UTT, via the primitive elimination operators for inductive datatypes. We do this
by showing how to construct terms corresponding to the splitting trees which
give rise to the functions: we show how to represent programming problems as
types for which splitting trees deliver inhabitants, and we explain how each step
of problem reduction may be realised by a term.

4.1 Heterogeneous equality

We must first collect the necessary equipment. The unification which we take
for granted in splitting trees becomes explicit equational reasoning, step by step.
We represent problems using McBride’s heterogeneous equality [16]:

Eq(s,T:xo;8:9;t: T):x1;  refl(Rixo;7:R):Eqr g 7 75
subst(Rixo;s,t:R; ¢:EqQrr s t; P:R—*1;p: P s): P t;
[R; r; P; p] substp.,.. (reflg ) Pp —p

Eq is not a standard inductive definition: it permits the expression of hetero-
geneous equations, but its eliminator subst gives the Leibniz property only for
homogeneous equations. This is just a convenient repackaging of the traditional
homogeneous identity type family I. The full construction can be found in [15].

It is to enable this construction that we keep equations in ;. We shall be
careful to form equations over data sets, but not equality sets. We are unsure
whether it is safe to allow equality sets in g, even though this would not yield
an independent copy of xg in xg. At any rate, it is sufficient that we can form
equations over data and eliminate data over equations.

We shall write s ~ t for Eqgr s t when the types S, T are clear. Furthermore
Eq precisely allows us to express equations between sequences of data in the same
telescope: the constraints which require the specialisation of datatype indices
take exactly this form. Note we always have D tele(xg), hence if §,t : D, we may
form the telescope of equations  q1:81 ~t1; ... ; qn:Sy >ty tele(x;)  which
we naturally abbreviate as §~ . Correspondingly, we write refl  : £ ~ {.

4.2 Standard Equipment for Inductive Datatypes

In [17], we show how to equip every datatype with some useful tools, derived from
its eliminator, which we shall need in the constructions to come. To summarise,

casep is just ep weakened by dropping the inductive hypotheses.

Belowp(P : D — ;D) : % is the ‘course of values’, defined inductively by
Giménez [7]; simulated via Ep, Belowp P = z computes an iterated tuple
type asserting P for every value structurally smaller than z. For Nat we get

Belowp, P zero —1
Belowy,: P (suc n) — Belowpna P nx P n



belowp(P:D — x;; p:TID. Belowp P D — P D; D):Belowp P D constructs
the tuple, given a ‘step’ function, and is simulated via ep:

belowya: P p zero ()
belowna P p (suc n) — (Ab:Belowna P n. (b,p n b)) (belowna P p n)

recp(P :D — %1; p:TID. Belowp P D — Pfﬁ; ﬁ)izP D is the structural
recursion operator for D, given by recp P p D +— p D (belowp P p D)

We use casep for splitting and recp for recursion. For unification, we need:

noConfusionp is the proof that D’s constructors are injective and disjoint—
also a two-level construction, again by example:

NoConfusionpa (P : *1; 7, y:Nat) :x
NoConfusiony,: P zero zero — P — P
NoConfusionyn,: P zero  (suc y) — P
NoConfusionp,t P (suc z) zero +— P
NoConfusionp,t P (suc z) (suc y) — (z ~y—P) — P

noConfusiony,: (P : x1; 2, y:Nat; ¢: 2 ~ y) : NoConfusionyy P z y
noConfusiony,: P zero  zero  (refl zero) — Ap:P.p
noConfusiony,: P (suc z) (suc z) (refl (suc n)) — Ap:ax ~ z— P. p (refl z)

NoConfusionp is simulated by two appeals to Ep; noConfusionp uses
subst once, then casep to work down the ‘diagonal’.
noCyclep disproves any cyclic equation in D—details may be found in [17].

Lemma 16 (Unification Transitions) The following (and their symmetric
images) are derivable:

deletion m:TIA. P
FAA; q.m A
TMMA t~t— P
solution m : TIAC. [z — ¢|TIAL. P
FAA; q.subst Tt 2 ¢ (Az. TIA%; AL P) m A° Al
MA t~2 — P
if A~ A%z:T; A and A°¢t: T
injectivity m : TTA. §~{ — P
- AA; ¢. noConfusion P (c 3) (ct) ¢ (m A)
cTMA. c§~ct— P
conflict  + AA; q. noConfusion P (chalk 5) (cheese t) ¢
: TIA. chalk 5~ cheese £ — P

cycle FAA;¢.noCycleP ... q...
:TMA. 2z ~c [plz]]— P

Proof By construction. t



4.3 Elimination with Unification

In [16], McBride gives a general technique for deploying operators whose types
resemble elimination rules. We shall use this technique repeatedly in our con-
structions, hence we recapitulate the basic idea here. Extending the previous
account, we shall be careful to ensure that the terms we construct not only have
the types we expect but also deliver the computational behaviour required to
simulate the pattern matching semantics.

Definition 17 (Elimination operator) For any telescope I' - = tele(xq), we
define a = -elimination operator to be any

e:TP:TIZ. % . (MA. P &) — -+ — (TIA,. P§,) = TIE. P 5

Note that ep is a D-elimination operator; casep and recp are also. We refer
to the = as the targets of the operator as they indicate what is to be eliminated;
we say P is the motive as it indicates why; the remaining arguments we call
methods as they explain how to proceed in each case which may arise. Now let
us show how to adapt such an operator to any specific sequence of targets.

Definition 18 (Basic analysis) If e is a Z-elimination operator (as above),
Atele(xg) and AT : %1, then for any A t: =, the basic e-analysis of TTA. T
at t is the (clearly derivable) judgment

miTMAGA. St —Ti imy:MMA A E i —T
FAA. e AE.TTA. ZE~t—T) my ...mut A (reflt) : TIA. T

Notice that when e is casep and the targets are some v; 2z where z : DU € A,
then for each constructor ¢ (A) : D @, we get a method

me:TMMASA @ ~0—>cA ~z —T

Observe that the equations on the indices are exactly those we must unify to
allow the instantiation of z with ¢ A°. Moreover, if we have such an instance
for z, i.e. if 6 unifies ¥ and ¥, and takes z +— c A, then the analysis actually
reduces to the relevant method:

casep (AD.TTA. 5 ~ 1 — T) 7 07 (c OA) OA (refl 07) (refl (c 0A%))
~ me QA A (refl 7) (refl (c 0A°))

We may now simplify the equations in the method types.

Definition 19 (Specialisation by Unification) Given any type of the form
MA. 4~ U — T : x1, we may seek to construct an inhabitant—a specialiser—by
erhaustively iterating the unification transitions from lemma 16 as applicable.
This terminates by the usual argument [10], with three possible outcomes:

negative success a specialiser is found, either by conflict or cycle;



positive success a specialiser is found, given some m : TIA'. oT for o a most
general idempotent unifer of 4 and U, or
failure at some stage, an equation is reached for which no transition applies.

Lemma 20 (Specialiser Reduction) If specialisation by unification delivers
m:MA . oTFs MA@ ~7F—T
then for any © b 0A unifying @ and T we have s 0A (refl i) ~* m A",

Proof By induction on the transition sequence. The deletion, solution and
injectivity steps each preserve this property by construction. O

We can now give a construction which captures our notion of splitting.

Lemma 21 (Splitting Construction) Suppose A b T : %1, with A tele(xq),
A% 1: DU Atele(xo) and A% x: DT A F[plz]]: A. Suppose further that for each
c (A%) : D 4, unifying @ with U succeeds. Then we may construct an inhabitant
f:TA% 2:D U;*A. [plz] [T over a context comprising, for each c with positive
success,

me : A" o[z — ¢ AVA. [oplc AT
for some most general idempotent unifier A’ o(A%; A¥). In each such case,
foA” (coA%)A~" me A'A

Proof The construction is by basic casep-analysis of TTA*; z: D @; "A. [ plz]|T
at ¥; z, then specialisation by unification for each method. The required reduction
behaviour follows from lemma 20. O

4.4 Translating Structural Recursion

We are very nearly ready to translate whole functions. For the sake of clarity,
we introduce one last piece of equipment:

Definition 22 (Computation Types) When implementing a function f(A) :
T, we introduce the family of f-computation types as follows:

Comp-f(A):xg; return-f(A;¢:T):Comp-f A

call-f(Comp-f): T
call-f A (return-f At) — ¢t

where call-f is clearly definable from ecomp-£-

Comp-f book-keeps the connection between f’s high-level program and the
low-level term which delivers its semantics. We translate each f-application to the
corresponding call-f of an f-computation; the latter will compute to a return-f
value exactly in correspondence with the pattern matching reduction. The trans-
lation takes the following form:



Definition 23 (Application Translation) Iff(A): T is globally defined, but
Al f: Comp-f A for some f not containing f, the translation {f}{ takes

{f1} = call-f (&} ({E}{]F)

and proceeds structurally otherwise. Recalling that we require global functions to
be applied with at least their declared arity, this translation removes f entirely.

Theorem 24 If £ (A) : T has a small type and computation rules [A;] £ Py r;
satisfying the function criteria, then there exists an f such that

AF f:Comp-f A and s~pgt  implies {S}f: ~h {t}f:

Proof It suffices to ensure that the pattern matching reduction schemes are
faithfully translated. For each ¢ such that r; returns a value — e;, we shall have

{£ [ = call-f [5] [5:]f ~5 call-f [i] (return-f [5] {e:})) ~r {e}f

Without loss of generality, let f be structurally recursive on some z:D ¥/, jth in
A. The basic recp-analysis of TTA. Comp-f A at ¥; z requires a term of type

TD. Belowp PD — MMA. D ~ #; z — Comp-f A

where P = AD. TTA. D ~ #;  — Comp-f A. Specialisation substitutes #; z for D,
yielding a specialiser [m]s of the required type, with

m : TTA. Belowp P ¥z — Comp-f A; AF recp P [m]s 'z A (refl ¥ x)
~*% m A (belowp P [m]s ¥'z) : Comp-f A

by definition of recp and specialisation reduction. We shall take the latter to be
our f, once we have suitably instantiated m. To do so, we follow f’s splitting
tree: lemma 21 justifies the splitting construction at each internal node and at
each rh y leaf. Each programming problem [A’] f p'in the tree corresponds to the
task of instantiating some m' : TTA’. Belowp P ([p](¥; z)) — Comp-f [p] where,

again by lemma 21, m [p]~% m' A'.
The splitting finished, it remains to instantiate the m; corresponding to each
[A;] £ i — e;. Now, [A—[p;] takes z : D ¥ to some [p;;]: D @, so we may take
m; — AA;; H :Belowp P @ [p;;]. return-f [p;] el

K2

where e;f is constructed by replacing each call f 77 in e; by an appropriate appeal

to H. As f is well typed and structurally recursive, so [A — 7] maps z : D ¢ to
r; : D where r; < [p;;]. By construction, Belowp P @ [p;; | reduces to a tuple of
the computations for subobjects of [p;;]. Hence we have a projection g such that
gH : A .w;r; ~ U,z — Comp-f A and hence we take call-f 7 (g H 7 (refl @; 7;))
to replace f 7, where by construction of belowp,

call-f 7 (g (belowp P [m]s @ [p;;]) 7 (refl &; r;))
~% call-f 7 ([m]s W r; 7 (refl @; ;)
~7% call-f 7 (m 7 (belowp P [m]s @ r;))
={t7}]



So, finally, we arrive at

{f [ﬁﬂ}f: = call-f [p;] (m [ ;| (belowp P [m]s i [pi;])
~7 call-f [p;] (m; A; (belowp P [m]s @ [pij]))
[7i]
[7i]

~%. call-f [p; (return f[pi] [H — belowp P [m]s i@ [pz-jﬂe;r)
~>%. call-f [p;](return-f [p;] {el}f)
= {ei}f
as required. O

5 Conclusions

We have shown that dependent pattern matching can be translated into a power-
ful though notationally minimal target language. This constitutes the first proof
that dependent pattern matching is equivalent to type theory with inductive
types extended with the K axiom, at the same time reducing the problem of the
termination of pattern matching as a first-class syntax for structurally recursive
programs and proofs to the problem of termination of UTT plus K.

Two of the authors have extended the raw notion of pattern matching that
we study here with additional language constructs for more concise, expressive
programming with dependent types [18]. One of the insights from that work is
that the technology for explaining pattern matching and other programming lan-
guage constructs is as important as the language constructs themselves, since the
technology can be used to motivate and explain increasingly powerful language
constructs.
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